计dp[i,j] 表示[i,j]区间能形成的答案总和。
枚举最后一次操作k。如果是乘法,答案为dp[i,k]*dp[k+1,j],
如果是加法,那么就是dp[i,k]*(r-k-1)!+dp[k+1,j]*(k-j)!。即要乘上右边k+1,r这些数所有可行的方案数。
减法同理。
最后再乘上两边操作合起来的方案书c[j-i-2][k-i]。
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<algorithm>
using namespace std;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#define nn 110
#define ll long long
#define ULL unsiged long long
//#define mod 1e9+7
#define inf oxfffffffffff
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
const ll mod = 1e9+7;
// ((`'-"` `""-'`))
// ) - - (
// / (o _ o) \
// \ ( 0 ) /
// _'-.._ '=' _..-'_
// /`;#'#'#. -. #'#'#;`\
// \_)) '#' ((_/
// #. ℃ ℃ ℃ .#
// '#. 箔 A C! .#'
// /'#. .#'\
// _\\'#. .#'//_
// (((___)'#'(___)))
ll a[nn],c[nn][nn];
ll dp[nn][nn];
char op[nn];
void init()
{
a[0]=1;
a[1]=1;
for(int i=2;i<nn;i++)
a[i]=(a[i-1]*i)%mod;
c[0][0]=1;
for(int i=1;i<nn;i++)
{
c[i][0]=1;
for(int j=1;j<=i;j++)
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
}
}
int main()
{
init();
int n;
while(~scanf("%d",&n))
{
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
scanf("%lld",&dp[i][i]);
scanf("%s",op+1);
for(int l=2;l<=n;l++)
{
for(int i=1;i+l-1<=n;i++)
{
int j=i+l-1;
dp[i][j]=0;
for(int k=i;k<j;k++)
{
ll t;
if(op[k]=='*')
t=(dp[i][k]*dp[k+1][j])%mod;
else if(op[k]=='+')
t=(dp[i][k]*a[j-k-1]+dp[k+1][j]*a[k-i])%mod;
else
t=(dp[i][k]*a[j-k-1]-dp[k+1][j]*a[k-i])%mod;
dp[i][j]=(dp[i][j]+t*c[j-i-1][k-i]+mod)%mod;
}
}
}
printf("%lld\n",(dp[1][n]+mod)%mod);
}
return 0;
}