hdu 5396 Expression (dp+组合数学)

计dp[i,j] 表示[i,j]区间能形成的答案总和。

枚举最后一次操作k。如果是乘法,答案为dp[i,k]*dp[k+1,j],

如果是加法,那么就是dp[i,k]*(r-k-1)!+dp[k+1,j]*(k-j)!。即要乘上右边k+1,r这些数所有可行的方案数。

减法同理。

最后再乘上两边操作合起来的方案书c[j-i-2][k-i]。

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<vector>
#include<iostream>
#include<string>
#include<set>
#include<map>
#include<algorithm>
using namespace std;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#define nn 110
#define ll long long
#define ULL unsiged long long
//#define mod 1e9+7
#define inf oxfffffffffff
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
const ll mod = 1e9+7;


//        ((`'-"` `""-'`))
//         ) -  -  (
//        /  (o _ o)  \
//        \  ( 0 )  /
//       _'-.._ '=' _..-'_
//      /`;#'#'#. -. #'#'#;`\
//      \_))   '#'   ((_/
//      #.  ℃ ℃ ℃  .#
//      '#.  箔 A C!  .#'
//       /'#.     .#'\
//       _\\'#.   .#'//_
//       (((___)'#'(___)))



ll a[nn],c[nn][nn];
ll dp[nn][nn];
char op[nn];
void init()
{
    a[0]=1;
    a[1]=1;
    for(int i=2;i<nn;i++)
        a[i]=(a[i-1]*i)%mod;
    c[0][0]=1;
    for(int i=1;i<nn;i++)
    {
        c[i][0]=1;
        for(int j=1;j<=i;j++)
            c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
    }
}
int main()
{
    init();
    int n;
    while(~scanf("%d",&n))
    {
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=n;i++)
            scanf("%lld",&dp[i][i]);
        scanf("%s",op+1);
        for(int l=2;l<=n;l++)
        {
            for(int i=1;i+l-1<=n;i++)
            {
                int j=i+l-1;
                dp[i][j]=0;
                for(int k=i;k<j;k++)
                {
                    ll t;
                    if(op[k]=='*')
                        t=(dp[i][k]*dp[k+1][j])%mod;
                    else if(op[k]=='+')
                        t=(dp[i][k]*a[j-k-1]+dp[k+1][j]*a[k-i])%mod;
                    else
                        t=(dp[i][k]*a[j-k-1]-dp[k+1][j]*a[k-i])%mod;
                    dp[i][j]=(dp[i][j]+t*c[j-i-1][k-i]+mod)%mod;
                }
            }
        }
        printf("%lld\n",(dp[1][n]+mod)%mod);
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值