两个线段树,来维护C在任意区间上出现的次数。外层按质(C)建树,内层按下标建树(只建需要用到的节点)。
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<stdlib.h>
#include<string>
using namespace std;
#define LL long long
#define ull unsigned long long
#define nn 50005
#define mm 20002000
int sz;
int q,a,b,c;
int root[nn*4];
int ls[mm],rs[mm],sum[mm],lazy[mm];
void init()
{
sz=1;
memset(root,0,sizeof(root));
memset(ls,0,sizeof(ls));
memset(rs,0,sizeof(rs));
memset(sum,0,sizeof(sum));
memset(lazy,0,sizeof(lazy));
}
void pushdown(int k,int l,int r)
{
if(!lazy[k] || l==r) return;
if(!ls[k]) ls[k]=sz++;
if(!rs[k]) rs[k]=sz++;
lazy[ls[k]]+=lazy[k];
lazy[rs[k]]+=lazy[k];
int mid=(l+r)>>1;
sum[ls[k]]+=(mid-l+1)*lazy[k];
sum[rs[k]]+=(r-mid)*lazy[k];
lazy[k]=0;
}
void mod(int &k,int l,int r,int ll,int rr)//内层
{
if( !k ) k=sz++;
pushdown(k,l,r);
if(l>=ll && r<=rr)
{
sum[k]+=r-l+1;
lazy[k]++;
return;
}
int mid=(l+r)>>1;
if(ll<=mid)
mod(ls[k],l,mid,ll,rr);
if(rr>mid)
mod(rs[k],mid+1,r,ll,rr);
sum[k]=sum[ls[k]]+sum[rs[k]];// pushup
}
void ins()
{
int k=1,l=1,r=n;
while(l != r)//外层
{
int mid=(l+r)>>1;
mod(root[k],1,n,a,b);
if(c<=mid) r=mid,k=k<<1;
else l=mid+1,k=k<<1|1;
}
mod(root[k],1,n,a,b);
}
int query(int k,int l,int r,int ll,int rr)
{
if(!k) return 0;
pushdown(k,l,r);
if(l>=ll && r<=rr)
return sum[k];
int mid=(l+r)>>1;
int ans=0;
if(ll<=mid)
ans+= query(ls[k],l,mid,ll,rr);
if(mid<rr) ans+= query(rs[k],mid+1,r,ll,rr);
return ans;
}
int solve()
{
int k=1,l=1,r=n;
while(l != r)
{
int mid=(l+r)>>1;
int t=query(root[k<<1],1,n,a,b);
if(t>=c) r=mid,k=k<<1;
else l=mid+1, k=k<<1|1, c -= t;
}
return l;
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
init();
while(m--)
{
scanf("%d%d%d%d",&q,&a,&b,&c);
if(q==1)
{
c=n-c+1;
ins();
}
else printf("%d\n",n-solve()+1);
}
}
return 0;
}