[Zjoi2013]K大数查询

两个线段树,来维护C在任意区间上出现的次数。外层按质(C)建树,内层按下标建树(只建需要用到的节点)。

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<stdlib.h>
#include<string>
using namespace std;

#define LL long long
#define ull unsigned long long
#define nn 50005
#define mm 20002000

int sz;
int q,a,b,c;
int root[nn*4];
int ls[mm],rs[mm],sum[mm],lazy[mm];

void init()
{
    sz=1;
    memset(root,0,sizeof(root));
    memset(ls,0,sizeof(ls));
    memset(rs,0,sizeof(rs));
    memset(sum,0,sizeof(sum));
    memset(lazy,0,sizeof(lazy));
}

void pushdown(int k,int l,int r)
{
    if(!lazy[k] || l==r) return;
    if(!ls[k])  ls[k]=sz++;
    if(!rs[k])  rs[k]=sz++;
    lazy[ls[k]]+=lazy[k];
    lazy[rs[k]]+=lazy[k];
    int mid=(l+r)>>1;
    sum[ls[k]]+=(mid-l+1)*lazy[k];
    sum[rs[k]]+=(r-mid)*lazy[k];
    lazy[k]=0;
}

void mod(int &k,int l,int r,int ll,int rr)//内层
{
    if( !k )  k=sz++;
    pushdown(k,l,r);
    if(l>=ll && r<=rr)
    {
        sum[k]+=r-l+1;
        lazy[k]++;
        return;
    }
    int mid=(l+r)>>1;
    if(ll<=mid)
        mod(ls[k],l,mid,ll,rr);
    if(rr>mid)
        mod(rs[k],mid+1,r,ll,rr);
    sum[k]=sum[ls[k]]+sum[rs[k]];// pushup
}

void ins()
{
    int k=1,l=1,r=n;
    while(l != r)//外层
    {
        int mid=(l+r)>>1;
        mod(root[k],1,n,a,b);
        if(c<=mid) r=mid,k=k<<1;
        else l=mid+1,k=k<<1|1;
    }
    mod(root[k],1,n,a,b);
}

int query(int k,int l,int r,int ll,int rr)
{
    if(!k)  return 0;
    pushdown(k,l,r);
    if(l>=ll && r<=rr)
        return sum[k];
    int mid=(l+r)>>1;
    int ans=0;
    if(ll<=mid)
        ans+= query(ls[k],l,mid,ll,rr);
    if(mid<rr) ans+= query(rs[k],mid+1,r,ll,rr);
    return ans;
}

int solve()
{
    int k=1,l=1,r=n;
    while(l != r)
    {
        int mid=(l+r)>>1;
        int t=query(root[k<<1],1,n,a,b);
        if(t>=c)    r=mid,k=k<<1;
        else l=mid+1, k=k<<1|1, c -= t;
    }
    return l;
}

int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        init();
        while(m--)
        {
            scanf("%d%d%d%d",&q,&a,&b,&c);
            if(q==1)
            {
                c=n-c+1;
                ins();
            }
            else printf("%d\n",n-solve()+1);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值