Machine Learning
Moon_flower
这个作者很懒,什么都没留下…
展开
-
Loss function
首先给出几种loss function的曲线示意图,来自PRML. 下面给出表达式。 1 exponential y = exp(-z) 该函数即为Adaboost采用的损失函数。 2 logistic y = log(1+exp(-z)) 上图所示的红色曲线被称为cross entropy (交叉熵),这是因为将交叉熵定义中的y取值原创 2015-10-22 21:59:28 · 362 阅读 · 0 评论 -
Precision, Recall and F-measure
Precision 和Recall是信息检索领域的常用评价指标。就直观意义而言,前者强调检索的精度,也即在所有检测到的结果中有多少是真正相关的;后者则强调检索的完整性,也成为查全率,关注在所有的相关记录中能够被检索到的比例,两者互为补充。 首先区别如下的关系: 相关 不相关 找到 A B 未找到 C D 则使用公式可以表原创 2015-10-22 21:17:01 · 480 阅读 · 0 评论