题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=2569
令f[i]表示到i时的方法总数。
递推:
若i之前的两个格子的颜色相同,则i处可以是三种颜色的任意一种,种类数为3*f[i-2]。
若i之前的两个格子的颜色不同,则i处的颜色只能是这两种颜色中的一种,种类数为2*(f[i-1]-f[i-2])。(f[i-1]为至i-1的总数,减去两个格子相同的种类数即为颜色不同的种类数)
递推关系为:f[1]=3,f[2]=9,f[i]=2*f[i-1]+f[i-2]。
代码:
#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
long long f[1001];
int main()
{
ios::sync_with_stdio(false);
int _;cin>>_;
for(int k=1;k<=_;k++)
{
int n;cin>>n;
memset(f,0,sizeof(f));
f[1]=3;f[2]=9;
for(int i=3;i<=n;i++)f[i]=f[i-2]+2*f[i-1];
cout<<f[n]<<endl;
}
return 0;
}