题目来源:https://codeforces.com/contest/1114/problem/D
区间dp。
首先明确要选定一个点为起点,每次只修改这个点的颜色,让所有点的颜色都相同。
例如:
5
1 9 1 4 1
结果应该是3而不是2。
这样,可以考虑对于每个区间,要么转成该区间左端点的颜色,要么是右端点的颜色。
令f[i][j][0]表示区间[l,r]转成左端点的颜色的最小方案数,f[i][j][1]表示区间转成右端点颜色的最小方案数,枚举区间长度,这样最终结果就是min(f[1][n][0],f[1][n][1])。
dp之前可以先对c数组进行处理,使得数组中相邻位置的颜色不相同。
代码:
#include <bits/stdc++.h>
using namespace std;
int n, c[5005], f[5001][5001][2];
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
memset(f, 63, sizeof f);
cin >> n;
int cnt = 0;
for (int i = 1; i <= n; ++i) {
int x;
cin >> x;
if (x != c[cnt])c[++cnt] = x;
}
n = cnt;
for (int i = 1; i <= n; ++i) {
f[i][i][0] = f[i][i][1] = 0;
}
for (int i = 2; i <= n; ++i) {
for (int j = 1; j <= n - i + 1; ++j) {
int l = j, r = i + j - 1;
f[l][r][0] = min(f[l][r][0], f[l + 1][r][0] + 1);
f[l][r][0] = min(f[l][r][0], f[l + 1][r][1] + ((c[l] == c[r]) ? 0 : 1));
f[l][r][1] = min(f[l][r][1], f[l][r - 1][1] + 1);
f[l][r][1] = min(f[l][r][1], f[l][r - 1][0] + ((c[l] == c[r]) ? 0 : 1));
}
}
cout << min(f[1][n][1], f[1][n][0]) << endl;
return 0;
}