堆排序

1.什么是堆,堆就是一个完全二叉树,一个数组就可以表示成一个堆,对于下标为i的数组元素来说,PARENT(i)=[i/2](去下整),LEFT(i)=2*i,RIGHT(i)=2*i+1;这样的话就可以把一个数组表示成一个完全二叉树。

对于一个堆(也就是完全二叉树)来说,高度定义就是从根节点到最下层叶子节点所经过的中间边的数量。

1°那么对于一个数目为n的堆来说,他的高度也就是 [lg(n)](下取整)

2°对于一个高度为h的堆来说,他的节点数目范围为【2^h~2^(h+1)-1】:高度为h也就意味着更有h+1层数,前h层都是满的,也就是分别为1,2,2^2,2^3,…,2^(h-1),但是第h+1层可以只有一个叶子,也可以是满的,也就是2^h个元素。

3°一个堆大小为n,其中节点i的子树大小至多为【2n/3】:最大的位置也就是位于根节点的的两棵子树的大小,不妨肯定是左边比右边大,嘴坏情况下,左边为h+1层,而右边为h层,那么左边数目为2^(h+1)-1,那么右边为2^h-1,那么2^(h+1)-1+2^h-1+1=n,那么节点i的子树至多为【2n/3】。

2.堆排序的第一步:建立最大堆

1°MAX-HEAPIFY(A,i),是对i进行处理,默认情况下,i的两个子树都已经是最大堆了,但是存在A[i]<A[LEFT(i)]或者A[i]<A[RIGHT(i)]

过程语言为:

MAX-HEAPIFY(A,i)

-1-    l<--- LEFT(i);

-2-    r<--- RIGHT(i);

-3-    if l<=heap_size(A)&&A[l]>A[i]

-4-       then  largest <--- l;

-5-    else  largest <--- i;

-6-    if r<=heap_size(A)&&A[r]>A[largest]

-7-      then largest <--- r;

-8-    if largest != i

-9-       exchange A[i]<--->A[largest]

-10-       MAX-HEAPIFY(A,largest;)

2°建立最大堆BUILD-MAX-HEAP(A)

-1-  heap_size(A)<---length(A);

-2-  for i <--- [length[A]/2](下取整) downto 1

-3-        do  MAX-HEAPIFY(A,i)

3堆排序算法

-1-  BUILD-MAX-HEAP(A);

-2-  for i <---length(A) downto 2

           do  exchange A[1] <--->A[i]

                  heap-size(A)<---heap-size(A)-1

                  MAX-HEAPIFY(A,1)

 

源程序:

#include<iostream>

using std::cout;
using std::endl;

int parent(int i)
{
 return i/2;
}
void exchange(int* a,int pos1, int pos2)
{

 if(pos1 == pos2)

      return;
 *(a+pos1)=*(a+pos1)^*(a+pos2);
 *(a+pos2)=*(a+pos1)^*(a+pos2);
 *(a+pos1)=*(a+pos1)^*(a+pos2);
}
int left(int i)
{
 return 2*i+1;
}

int right(int i)
{
 return 2*i+2;
}

void Max_heap(int * a,int size, int pos)
{
 if(pos > size-1)
 {
  return;
 }
 int l = left(pos);
 int r = right(pos);
 int largest;
 if(l<size && *(a+l)>*(a+pos))
  largest = l;
 else
  largest = pos;
 if(r<size && *(a+r)>*(a+largest))
  largest = r;
 if (largest != pos)
 {
  exchange(a,pos,largest);
  Max_heap(a,size,largest);
 }

}

void Bulid_Max_heap(int *a ,int size)
{
 for(int i = (size-1)/2;i>=0;i--)
 {
  Max_heap(a,size,i);
 }
}

void Max_heap_sort(int *a, int size)
{
 if(size<=1)
  return;
 if(size == 2)
 {
  if(*a>*(a+1))
  {
   exchange(a,0,1);
   return;
  }
  else
   return;
 }
 Bulid_Max_heap(a,size);
 int temp;
 int size_temp = size;
 for(int i = size-1;i>=1; i--)
 {
  exchange(a,0,i);
  size_temp = size_temp-1;
  Max_heap(a,size_temp,0);
 }
}

int main()
{
 int a[] ={4,9,7,6,17,13,15};
 Max_heap_sort(a,7);
 for(int i = 0;i<7;i++)
  cout<<*(a+i)<<" ";
 cout<<endl;
}

 

阅读更多
文章标签: exchange 算法 语言
个人分类: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭