Leetcode 204. 计数质数

本文深入探讨了四种不同的质数求解算法:暴力搜索、优化后的暴力搜索、厄拉多塞筛选及其优化版。从算法思路、时间与空间复杂度到具体实现代码,全面解析每种方法的特点及效率,帮助读者理解并掌握质数计算的核心技术。
摘要由CSDN通过智能技术生成

1. 暴力搜索

1.1 思路

根据质数定义,用每一个大于1且小于它本身的整数进行取余运算,如果没有整除情况,则该数为质数。

1.2 复杂度

  • 时间复杂度 O(n^2)
  • 空间复杂度 O(1)

1.3 代码

class Solution {
    public int countPrimes(int n) {
        int count = 0;
        for (int i = 2; i < n; i++) {
            if (isPrime(i)) {
                count++;
            }
        }
        return count;
    }

    private boolean isPrime(int n) {
        for (int i = 2; i < n; i++) {
            if (n % i == 0) {
                return false;
            }
        }
        return true;
    }
}

2. 暴力搜索优化

2.1 思路

对正整数 n n n,只需用 [ 2 , √ n ] [2, √n] [2,n] 之间的正整数进行取余运算,如果没有整除情况,则为质数。

2.2 复杂度

  • 时间复杂度 O(n^2)
  • 空间复杂度 O(1)

2.3 代码

class Solution {
    public int countPrimes(int n) {
        if (n < 3) {
            return 0;
        }
        
        int count = 1;
        for (int i = 3; i < n; i = i + 2) {
            if (isPrime(i)) {
                count++;
            }
        }
        return count;
    }

    private boolean isPrime(int n) {
        for (int i = 2; i * i <= n; i++) {
            if (n % i == 0) {
                return false;
            }
        }
        return true;
    }
}

3. 厄拉多塞筛选

3.1 思路

对每一个大于1的正整数,如果将它所有的倍数(不包括它本身)排除,那么剩下的必为质数。

3.2 复杂度

  • 时间复杂度 O(n)
  • 空间复杂度 O(n)

3.3 代码

class Solution {
    public int countPrimes(int n) {
        int count = 0;
        boolean[] flag = new boolean[n];
        for (int i = 2; i < n; i++) {
            if (!flag[i]) {
                count++;
                for (int j = i + i; j < n; j += i) {
                    flag[j] = true;
                }
            }
        }
        return count;
    }
}

4. 厄拉多塞筛选优化

4.1 思路

使用布尔数组标记是否为质数时,每个数占用四个字节。实际上,完全可以使用一个比特记录逻辑值,即位图法。

4.2 复杂度

  • 时间复杂度 O(n)
  • 空间复杂度 O(n)

4.3 代码

class Solution {
    public int countPrimes(int n) {
        int count = 0;
        int[] flag = new int[n / 32 + 1];
        for (int i = 2; i < n; i++) {
            if ((flag[i / 32] & (1 << (i & 31))) == 0) {
                count++;
                for (int j = i + i; j < n; j += i) {
                    flag[j / 32] |= 1 << (j & 31);
                }
            }
        }
        return count;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值