算法学习笔记----递归式证明

本文通过数学归纳法证明了当n为2的整数次幂时,递归式T(n)=2T(n/2)+n的解为T(n)=nlgn。首先验证了n=2时的情形,并假设递归式的解为T(n)=nlgn,进而证明了T(n/2)=(n/2)lg(n/2)时结论也成立。
摘要由CSDN通过智能技术生成

 题目:利用数学归纳法证明:当n是2的整数次幂时,递归式


的解为T(n)=nlgn。

  证明如下:

  当n=2时,T(n)=2*lg2=2。

  假设递归式的解为T(n)=nlgn,有T(n/2)=(n/2)lg(n/2),将T(n/2)带入递归式,过程如下所示:

T(n) = 2*(n/2)*lg(n/2) + n
     = nlg(n/2) + n
     = nlgn - nlg2 + n
     =nlgn

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值