递归算法的证明与设计

本文详细介绍了如何使用数学归纳法证明递归算法的正确性,以汉诺塔问题为例,分别阐述了证明算法可以返回以及返回结果正确性的两个步骤。通过递归调用和假设,展示了递归算法在处理任意有意义输入时能够正确返回解决方案的过程。
摘要由CSDN通过智能技术生成

主1:关于递归算的证明是证明算法的正确性。

证明所需工具:数学归纳法。


证明分为两个步骤:

    1、证明该算法对于任意有意义的输入都可以返回。

    2、证明该算法对于任意有意义的输入它的返回都是正确的。

    总结,对于任意有意义的输入都可以返回正确的结果。


例子:Hanoi(汉诺)塔问题:

void hanoi(int n,char s,char t,char d)    // s=source t=temporary d=destination
{
    if(1 == n)                    // 程序段一 
    {
        printf("%c -> %c\n",s,d);        // move s to d
    }
    else                        // 程序段二 
    {
        hanoi(n-1,s,d,t);
        printf("%c -> %c\n",s,d);        // move s to d
        hanoi(n-1,t,s,d);
    }
}

hanoi(n,'1','2','3');            // 初始调用
对于初始调用第2、3、4参数都是固定的,因此我们只对第一个参数n进行归纳。

第一步:

当 n = 1 时,该函数进入程序段一,打印 1 -> 3 后就返回了,因此该函数可以返回。

假设:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值