自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(89)
  • 资源 (5)
  • 收藏
  • 关注

转载 计算机视觉领域稍微容易中的期刊(第一版)

模式识别,计算机视觉领域,期刊 (1)pattern recognition letters, 从投稿到发表,一年半时间(2)Pattern recognition 不好中,时间长(3)IEICE Transactions on Information and Systems, 作者中有一个必须是会员。收费高,审稿快。影响因子0.4(4)Internatio

2016-12-09 19:03:54 1066

转载 [小木虫]推荐几个机器学习算法及应用领域相关的中国大牛

李航:http://research.microsoft.com/en-us/people/hangli/,是MSRA Web Search and Mining Group高级研究员和主管,主要研究领域是信息检索,自然语言处理和统计学习。近年来,主要与人合作使用机器学习方法对信息检索中排序,相关性等问题的研究。曾在人大听过一场他的讲座,对实际应用的问题抽象,转化和解决能力值得学习。

2015-11-12 15:26:43 1458

转载 图像处理与计算机视觉基础,经典以及最近发展

在这里,我特别声明:本文章的源作者是   杨晓冬  (个人邮箱:xdyang.ustc@gmail.com)。原文的链接是http://www.iask.sina.com.cn/u/2252291285/ish。版权归 杨晓冬 朋友所有。         我非常感谢原作者辛勤地编写本文章,并愿意共享出来。我也希望转载本文的各位朋友,要注明原作者和出处,以尊重原作者!          

2015-07-03 17:51:35 2876

转载 推荐一些用CRF做图像语义分割的资源

首先是code,以前找了很多,但发现比较好用的有: 1. Matlab版的UGM:http://www.di.ens.fr/~mschmidt/Software/UGM.html,作者法国的,写了很多实用的工具箱。2. C++版的gco-v3.0:http://vision.csd.uwo.ca/code/,用于求解crf,作者Olga Veksler,专门

2015-07-03 17:31:23 780

转载 图像语义理解

1.没有图像的理解,就不要谈目标的检测、分类和识别。理解才是硬道理;    2.不在于图像理解模型是否与人类的认知过程一致,关键是要有效;    3.图像是最自然的自然语言,图像理解可以借鉴自然语言处理中的方法。                  引言   从CVPR、ICCV、ECCV、IJCV、PAMI、JOV等国际会议和期刊中,我们可以看出目前关于目标检测(如

2015-07-03 15:57:26 1776

转载 Matlab计算机视觉/图像处理工具箱推荐

Matlab计算机视觉/图像处理工具箱推荐2014年4月9日机器学习MATLAB, 计算机视觉luffylee计算机视觉/图像处理研究中经常要用到Matlab,虽然其自带了图像处理和计算机视觉的许多功能,但是术业有专攻,在进行深入的视觉算法研究的时候Matlab的自带功能难免会不够用。本文收集了一些比较优秀的Matlab计算机视觉工具箱,希望能对国内的研究者有所帮助。VLF

2015-04-23 11:41:14 33044

转载 无监督特征学习——Unsupervised feature learning and deep learning

无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training。本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning by Andr

2015-04-23 11:35:29 428

转载 机器学习——深度学习(Deep Learning)

Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN,1. 有监督学习和无监督学习给定一组数据(inpu

2015-04-23 11:34:10 604

转载 Stanford机器学习---第九讲. 聚类

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。内容大多来自Standford公开课machine learning中

2015-04-23 11:33:30 402

转载 Stanford机器学习---第八讲. 支持向量机SVM

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2015-04-23 11:32:20 649

转载 Stanford机器学习---第六讲. 怎样选择机器学习方法、系统

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2015-04-23 11:30:46 418

转载 Stanford机器学习---第七讲. 机器学习系统设计

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2015-04-23 11:30:34 320

转载 Stanford机器学习---第五讲. 神经网络的学习 Neural Networks learning

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2015-04-23 11:27:31 658

转载 Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性回归、多参数线性回归和 逻辑回归的总结版。旨在帮助大家更好地理解回归,所以我在Matlab中分别对他们予以实现,在本文中由易到难地逐个介绍。本讲内容:Matlab 实现各种回归函数=========================基本模

2015-04-23 11:24:40 1082

转载 Stanford机器学习---第四讲. 神经网络的表示 Neural Networks representation

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2015-04-23 11:22:29 437

转载 Stanford机器学习---第三讲. 逻辑回归和过拟合问题的解决 logistic Regression & Regularization

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2015-04-23 11:21:44 527

转载 Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning

2015-04-23 11:19:46 474

转载 Stanford机器学习---第一讲. Linear Regression with one variable

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。所有内容均来自Standford公开课machine learning中A

2015-04-23 11:18:11 416

转载 图割Graph-Cut的最大流实现

利用最大流标号法求解最大流,详见代码:Version:未加头尾节点版;缺点:havn't take nodes' pixels into consideration[cpp] view plaincopy/*************************************************************

2015-04-23 11:08:28 671

转载 matlab中实现Gabor滤波器

1.spatialgabor.m描述gabor函数% SPATIALGABOR - applies single oriented gabor filter to an image%% Usage:%  [Eim, Oim, Aim] =  spatialgabor(im, wavelength, angle, kx, ky, showfilter)%% Argumen

2015-04-23 11:04:49 1808

转载 特征选择常用算法综述

1 综述(1) 什么是特征选择特征选择 ( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ) ,或属性选择( Attribute Selection ) ,是指从全部特征中选取一个特征子集,使构造出来的模型更好。 (2) 为什么要做特征选择       在机器学习的实际应用中,特征数量往往较多,其

2015-03-10 12:10:27 485

转载 计算机科学中最重要的32个算法

奥地利符号计算研究所(Research Institute forSymbolic Computation,简称RISC)的ChristophKoutschan博士在自己的页面上发布了一篇文章,提到他做了一个调查,参与者大多数是计算机科学家,他请这些科学家投票选出最重要的算法,以下是这次调查的结果,按照英文名称字母顺序排序。A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径

2015-03-10 11:43:57 308

原创 图像处理领域的国际会议及期刊

图像处理领域一、国际会议会议名称会议介绍ICCV: IEEE International Conference on Computer Vision领域顶级国际会议,录取率20%左右,2年一次,中国大陆每年论文数不超过10篇CVPR: IEEE Conf on Comp Vision and Pattern R

2015-03-07 14:53:57 4976

转载 要读顶级会议上的论文

在机器学习、计算机视觉和人工智能领域,顶级会议才是王道。国内教材和CNKI上的基本是N年前老掉牙的东西。有人会质疑这些会议都只是EI。是的,这的确非常特殊:在许多其它领域,会议都是盛会,比如society of neuroscience的会议,每次都有上万人参加,带个abstract和poster就可以去。但在所讨论的几个领域,顶级会议的重要性无论怎么强调都不为过。 可以从以下几点说明:(

2015-03-07 14:51:17 604

转载 计算机视觉、模式识别、机器学习常用牛人主页链接

牛人主页(主页有很多论文代码)Serge Belongie at UC San DiegoAntonio Torralba at MITAlexei Ffros at CMUCe Liu at Microsoft Research New EnglandVittorio Ferrari at Univ.of EdinburghKristen Grauman at UT Au

2014-12-01 16:18:14 1298

转载 SCI 投稿全过程信件模板

一、最初投稿CoverletterDear Editors:We would like to submit the enclosedmanuscript entitled “Paper Title”, which we wish to be considered forpublication in “Journal Name”. No conflict of interest ex

2014-10-31 15:00:43 552

转载 编译运行BSR/bench源码

Berkeley图像分割数据库及相应代码是在64位Linux系统下开发的,包含C和Matlab代码。今天的任务是在刚装的32位Ubuntu12.04下编译运行该代码包。第一步,需要将 \BSR\bench\source 中的.cc文件编译为.mex文件替换 BSR\bench\benchmarks 中的.mexa64 文件。.mexa64文件表示在64位Linux系统下编译好的C或Fort

2014-10-12 04:28:24 1418 1

转载 横向比较图像标注中的两种基于近邻思想的方法 TagProp和SGSSL

利用近邻传递标签的思想进行图像标注在近几年的图像标注工作中取得了很好的效果,甚至有点难以超越的感觉了。其中最具有代表性的是09年ICCV上的 《TagProp:Discriminative Metric Learning in Nearest Neighbor Models for Image Auto-Annotation》以及同年MM上的《Inferring  Semantic Concept

2014-09-26 17:02:19 1528

转载 2013计算机视觉代码合集

来源:http://www.yuanyong.org/cv/cv-code-one.html http://www.yuanyong.org/cv/cv-code-two.html http://www.yuanyong.org/cv/cv-code-three.html Posted on: 2013/09/07 by 西瓜

2014-09-26 11:36:33 1098

转载 最大熵模型介绍及实现

转自:http://www.cnblogs.com/hexinuaa/p/3353479.htmlhttp://blog.csdn.net/hexinuaa/article/details/24711675Overview统计建模方法是用来modeling随机过程行为的。在构造模型时,通常供我们使用的是随机过程的采样,也就是训练数据。这些样本所具有的知识(较少),事实上,不

2014-09-25 15:21:54 1309

转载 MRF,马尔科夫随机场

之前自己做实验也用过MRF(Markov Random Filed,马尔科夫随机场),基本原理理解,但是很多细节的地方都不求甚解。恰好趁学习PGM的时间,整理一下在机器视觉与图像分析领域的MRF的相关知识。        打字不易,转载请注明。http://blog.csdn.net/polly_yang/article/details/9716591        在机器视觉领域

2014-08-19 15:31:10 1089

转载 图形/图像外文期刊

ACM computing surveys ACM transactions on graphics Computer graphics   EIComputers & graphics Computerized medical imaging and graphics Graphical models IEEE transactions on image processi

2014-07-10 10:41:46 1208

转载 计算机视觉领域稍微容易中的期刊(第一版)

模式识别,计算机视觉领域,期刊 (1)pattern recognition letters, 从投稿到发表,一年半时间(2)Pattern recognition 不好中,时间长(3)IEICE Transactions on Information and Systems, 作者中有一个必须是会员。收费高,审稿快。影响因子0.4(4)Internatio

2014-07-10 09:25:40 551

转载 机器视觉牛人及其相关领域分类科普

机器视觉方向的明星人物介绍简要归类以下进行了简要的归类:可能部分类别有重叠或重复,详见人物介绍和相应网址领域人物编号图像分割CV1、CV10、CV14、CV18、CV33、CV34图像图形匹配CV2、CV5(sift)、CV18、CV34人脸CV3、C

2014-06-26 15:19:04 1363

转载 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut

聚类算法是ML中一个重要分支,一般采用unsupervised learning进行学习,本文根据常见聚类算法分类讲解K-Means, K-Medoids, GMM, Spectral clustering,Ncut五个算法在聚类中的应用。Clustering Algorithms分类1. Partitioning approach: 

2014-06-14 21:00:55 505

转载 Matlab计算机视觉/图像处理工具箱推荐

原文地址:http://cvnote.info/matlab-cv-ip-toolbox/计算机视觉/图像处理研究中经常要用到Matlab,虽然其自带了图像处理和计算机视觉的许多功能,但是术业有专攻,在进行深入的视觉算法研究的时候Matlab的自带功能难免会不够用。本文收集了一些比较优秀的Matlab计算机视觉工具箱,希望能对国内的研究者有所帮助。VLFeat:著名而常用

2014-05-15 10:11:19 834

转载 通俗易懂的机器学习入门

(写在前面)昨天说写个机器学习书单,那今天就写一个吧。这个书单主要是入门用的,很基础,适合大二、大三的孩子们看看;当然你要是大四或者大四以上没看过机器学习也适用。无论是研究智能还是做其他事情,机器学习都是必须的。你看GFW都用机器学习了,咱是不是也得科普一下。 (全文结构)其实,我想了想,学一门学科,列出一堆书,评论来评论去的,其实对初学者用处不大;他都不知道这些是啥,你就开始一顿评论,只能空

2014-04-30 11:51:13 673

转载 核方法(kernel method)的主要思想

本文对核方法(kernel method)进行简要的介绍。核方法的主要思想是基于这样一个假设:“在低维空间中不能线性分割的点集,通过转化为高维空间中的点集时,很有可能变为线性可分的” ,例如下图  左图的两类数据要想在一维空间上线性分开是不可能的,然而通过F(x)=(x-a)(x-b)把一维空间上的点转化为右图上的二维空间上,就是可以线性分割的了。然而,如果

2014-04-30 11:07:35 567

转载 Grabcut(一)

GrabCut里用的这个能量函数E是GraphCut里最常用的。这个这么去理解:最优的分割Z应该使得分割后前景像素更像前景,背景像素更像背景(前景与背景分别由GMM描述),另外,如果相邻像素的颜色差异比较小,那么它们更有可能同属前景或者背景。E的两个能量项U和V就是分别刻画这个的。因此可以把分割看作是一个优化问题。这个问题可以从另一个角度来看,也就是MRF上的极大后验估计问题(MRF-MA

2014-04-08 11:31:56 1148

转载 整型规划的凸松弛(Convex Relaxation in Integer Programming)

计算机视觉的问题很多时候最终被归结为组合优化问题,对此类问题采用组合分析的方法往往不能在多项式时间内求出最优解,因此我们需要一个好的逼近方法来求解此类问题,一个合理的方法就是通过凸松弛的方法来逼近整型规划问题。该方法的如要思想如下:       先来看下整型组合优化问题,对于(图一)中的寻找最小点(红点)问题,用求导的方法不可取,用排序的方法就是NP问题,无法在多项式时间内找到最优解。

2014-03-21 17:19:42 2363

粗糙集理论算法与知识获取-王国胤

这是粗糙集的入门必读书之一,想了解粗糙集基础知识应该看这本书。

2013-09-10

点集拓扑学讲义

四川大学张德学的点集拓扑学讲义,对掌握拓扑学基础知识很有帮助!

2013-09-10

粒计算前景与挑战

描述粒计算的前景和挑战,对粒计算感兴趣的可以借鉴!

2013-09-10

粗糙集与知识获取

这是一本学习粗糙集很好的入门教材,理论基本详细易懂,还有实例讲解。

2013-09-03

如何撰写英文科技论文

详细讲述如何撰写英文科技论文,起到了很好的指导作用,是不可多得的科技论文写作指导书。

2013-06-18

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除