注意到2.1节中的过程insertion-sort的第5~7行的while循环采用一种线性查找来(反向)扫描已排好序的子数组A[1...j-1].
我们可以使用二分查找(参见练习2.3-5)来把插入排序的最坏情况总运行时间改进到θ(nlgn)吗?
INSERTION-SORT(A):
1 for j = 2 to A.length
2 key = A[j]
3 // Insert A[j] into the sorted sequence A[1...j-1]
4 i = j - 1
5 while i > 0 and A[i] > key
6 A[i+1] = A[i]
7 i = i - 1
8 A[ i + 1 ] = key
该INSERTION-SORT(A)算法的含义是 对每一位元素 不断先前比较相邻的两个数 如果逆序的话就进行交换
在最坏的情况下 完全逆序的数 要对n位元素的每个元素进行n次计算 复杂度θ(n^2)
如果要改成二分法查询 查找元素应该所在序号的话 在最坏情况对第n个数进行排序时 需要执行的步骤数为:
在lgn个步骤内找到它所属的位置
但是在最坏情况下 元素找到位置后 后面所有的元素需要往后位移1位 最后元素的位移次数为n*(n-1) 依然是θ(n^2)
所以不能用二分查找的方式将总运行时间改进到θ(nlgn)