问题描述
小明在玩一个电脑游戏,游戏在一个n×m的方格图上进行,小明控制的角色开始的时候站在第一行第一列,目标是前往第n行第m列。
方格图上有一些方格是始终安全的,有一些在一段时间是危险的,如果小明控制的角色到达一个方格的时候方格是危险的,则小明输掉了游戏,如果小明的角色到达了第n行第m列,则小明过关。第一行第一列和第n行第m列永远都是安全的。
每个单位时间,小明的角色必须向上下左右四个方向相邻的方格中的一个移动一格。
经过很多次尝试,小明掌握了方格图的安全和危险的规律:每一个方格出现危险的时间一定是连续的。并且,小明还掌握了每个方格在哪段时间是危险的。
现在,小明想知道,自己最快经过几个时间单位可以达到第n行第m列过关。
方格图上有一些方格是始终安全的,有一些在一段时间是危险的,如果小明控制的角色到达一个方格的时候方格是危险的,则小明输掉了游戏,如果小明的角色到达了第n行第m列,则小明过关。第一行第一列和第n行第m列永远都是安全的。
每个单位时间,小明的角色必须向上下左右四个方向相邻的方格中的一个移动一格。
经过很多次尝试,小明掌握了方格图的安全和危险的规律:每一个方格出现危险的时间一定是连续的。并且,小明还掌握了每个方格在哪段时间是危险的。
现在,小明想知道,自己最快经过几个时间单位可以达到第n行第m列过关。
输入格式
输入的第一行包含三个整数n, m, t,用一个空格分隔,表示方格图的行数n、列数m,以及方格图中有危险的方格数量。
接下来t行,每行4个整数r, c, a, b,表示第r行第c列的方格在第a个时刻到第b个时刻之间是危险的,包括a和b。游戏开始时的时刻为0。输入数据保证r和c不同时为1,而且当r为n时c不为m。一个方格只有一段时间是危险的(或者说不会出现两行拥有相同的r和c)。
接下来t行,每行4个整数r, c, a, b,表示第r行第c列的方格在第a个时刻到第b个时刻之间是危险的,包括a和b。游戏开始时的时刻为0。输入数据保证r和c不同时为1,而且当r为n时c不为m。一个方格只有一段时间是危险的(或者说不会出现两行拥有相同的r和c)。
输出格式
输出一个整数,表示小明最快经过几个时间单位可以过关。输入数据保证小明一定可以过关。
样例输入
3 3 3
2 1 1 1
1 3 2 10
2 2 2 10
2 1 1 1
1 3 2 10
2 2 2 10
样例输出
6
样例说明
第2行第1列时刻1是危险的,因此第一步必须走到第1行第2列。
第二步可以走到第1行第1列,第三步走到第2行第1列,后面经过第3行第1列、第3行第2列到达第3行第3列。
第二步可以走到第1行第1列,第三步走到第2行第1列,后面经过第3行第1列、第3行第2列到达第3行第3列。
评测用例规模与约定
前30%的评测用例满足:0 < n, m ≤ 10,0 ≤ t < 99。
所有评测用例满足:0 < n, m ≤ 100,0 ≤ t < 9999,1 ≤ r ≤ n,1 ≤ c ≤ m,0 ≤ a ≤ b ≤ 100。
__________________________________________________________________________
所有评测用例满足:0 < n, m ≤ 100,0 ≤ t < 9999,1 ≤ r ≤ n,1 ≤ c ≤ m,0 ≤ a ≤ b ≤ 100。
我又来重复一遍,看到找“最短”,包括最短时间还是最短距离什么的,同时各路径权限还都是1,那么就要想下有没有用广度搜索做的可能性。这题又验证了这个道理。
这题用BFS和平时的又有一些不一样,往常做的题目大多搜索过的路径都不允许再走一次,但是这题就不一样了,测试样例就允许“走回头路”。但是路过不设置一些条件让程序毫无限制的上下左右随意的来回走,很容易控制不足路径的规模,时间一下就超过了。我第一遍用BFS做这题就是这样超时了,才20分,还不如我考试时用深搜做的。那么。换句话来说,程序还是需要设置条件使之每步都是唯一的,即“不走回头路”,但是这每一步不是仅仅指坐标,还包括另一个状态信息。
这个状态信息就是时间,把路径设置成三维的,横坐标、纵坐标、时间三个决定了每次搜索的一步。相同时刻下,只能一次到达相同坐标。因为相同时刻即使有多条路径可以到达同一坐标,但是在下一时刻,他们的路径选择都是相同的,那么这个时刻只需要一次到达就行,其余的都是重复。
程序中使用get[i][j][t]表示表示在时间t下,是否已经到达过坐标(i,j),如果到达过则为true,否则为false。程序代码如下:
#include<iostream>
#include<queue>
using namespace std;
#define MAXX 110
struct Time{
int beg;
int end;
};
struct node{
int x;
int y;
int time;
};
queue<struct node> q;
struct Time T[MAXX][MAXX];
bool get[MAXX][MAXX][10100];
int n,m,t;
int BFS()
{
int x,y,time;
struct node N,now;
N.x = N.y =1;
N.time = 0;
q.push(N);
while(!q.empty())
{
now = q.front();
q.pop();
x = now.x;
y = now.y;
time = now.time;
if(x==n && y==m)
{
return now.time;
}
if(x+1<=n && !get[x+1][y][time+1])
{
if(time+1>T[x+1][y].end || time+1<T[x+1][y].beg)
{
N.x = x+1;
N.y = y;
N.time = time+1;
q.push(N);
get[x+1][y][time+1] = true;
}
}
if(y+1<=m && !get[x][y+1][time+1])
{
if(time+1>T[x][y+1].end || time+1<T[x][y+1].beg)
{
N.x = x;
N.y = y+1;
N.time = time+1;
q.push(N);
get[x][y+1][time+1] = true;
}
}
if(x-1>0 && !get[x-1][y][time+1])
{
if(time+1>T[x-1][y].end || time+1<T[x-1][y].beg)
{
N.x = x-1;
N.y = y;
N.time = time+1;
q.push(N);
get[x-1][y][time+1] = true;
}
}
if(y-1>0 && !get[x][y-1][time+1])
{
if(time+1>T[x][y-1].end || time+1<T[x][y-1].beg)
{
N.x = x;
N.y = y-1;
N.time = time+1;
q.push(N);
get[x][y-1][time+1] = true;
}
}
}
}
int main()
{
int x,y,beg,end;
cin >> n >> m >> t;
for(int i=0;i<t;i++)
{
cin >> x >> y >> beg >> end;
T[x][y].beg = beg;
T[x][y].end = end;
}
cout << BFS();
return 0;
}