CCF CSP 游戏 BFS

本文介绍了一种基于广度优先搜索(BFS)的游戏地图寻路算法实现,该算法用于帮助游戏角色避开危险区域并找到从起点到终点的最短路径。通过设定三维路径搜索空间,并利用时间作为状态之一,确保搜索过程的高效性和正确性。
摘要由CSDN通过智能技术生成

问题描述
  小明在玩一个电脑游戏,游戏在一个n×m的方格图上进行,小明控制的角色开始的时候站在第一行第一列,目标是前往第n行第m列。
  方格图上有一些方格是始终安全的,有一些在一段时间是危险的,如果小明控制的角色到达一个方格的时候方格是危险的,则小明输掉了游戏,如果小明的角色到达了第n行第m列,则小明过关。第一行第一列和第n行第m列永远都是安全的。
  每个单位时间,小明的角色必须向上下左右四个方向相邻的方格中的一个移动一格。
  经过很多次尝试,小明掌握了方格图的安全和危险的规律:每一个方格出现危险的时间一定是连续的。并且,小明还掌握了每个方格在哪段时间是危险的。
  现在,小明想知道,自己最快经过几个时间单位可以达到第n行第m列过关。
输入格式
  输入的第一行包含三个整数n, m, t,用一个空格分隔,表示方格图的行数n、列数m,以及方格图中有危险的方格数量。
  接下来t行,每行4个整数r, c, a, b,表示第r行第c列的方格在第a个时刻到第b个时刻之间是危险的,包括a和b。游戏开始时的时刻为0。输入数据保证r和c不同时为1,而且当r为n时c不为m。一个方格只有一段时间是危险的(或者说不会出现两行拥有相同的r和c)。
输出格式
  输出一个整数,表示小明最快经过几个时间单位可以过关。输入数据保证小明一定可以过关。
样例输入
3 3 3
2 1 1 1
1 3 2 10
2 2 2 10
样例输出
6
样例说明
  第2行第1列时刻1是危险的,因此第一步必须走到第1行第2列。
  第二步可以走到第1行第1列,第三步走到第2行第1列,后面经过第3行第1列、第3行第2列到达第3行第3列。
评测用例规模与约定
  前30%的评测用例满足:0 < n, m ≤ 10,0 ≤ t < 99。
  所有评测用例满足:0 < n, m ≤ 100,0 ≤ t < 9999,1 ≤ r ≤ n,1 ≤ c ≤ m,0 ≤ a ≤ b ≤ 100。
__________________________________________________________________________

我又来重复一遍,看到找“最短”,包括最短时间还是最短距离什么的,同时各路径权限还都是1,那么就要想下有没有用广度搜索做的可能性。这题又验证了这个道理。

这题用BFS和平时的又有一些不一样,往常做的题目大多搜索过的路径都不允许再走一次,但是这题就不一样了,测试样例就允许“走回头路”。但是路过不设置一些条件让程序毫无限制的上下左右随意的来回走,很容易控制不足路径的规模,时间一下就超过了。我第一遍用BFS做这题就是这样超时了,才20分,还不如我考试时用深搜做的。那么。换句话来说,程序还是需要设置条件使之每步都是唯一的,即“不走回头路”,但是这每一步不是仅仅指坐标,还包括另一个状态信息。

这个状态信息就是时间,把路径设置成三维的,横坐标、纵坐标、时间三个决定了每次搜索的一步。相同时刻下,只能一次到达相同坐标。因为相同时刻即使有多条路径可以到达同一坐标,但是在下一时刻,他们的路径选择都是相同的,那么这个时刻只需要一次到达就行,其余的都是重复。

程序中使用get[i][j][t]表示表示在时间t下,是否已经到达过坐标(i,j),如果到达过则为true,否则为false。程序代码如下:

#include<iostream>
#include<queue>
using namespace std;
#define MAXX 110
struct Time{
	int beg;
	int end;
};
struct node{
	int x;
	int y;
	int time;
};
queue<struct node> q;
struct Time T[MAXX][MAXX];
bool get[MAXX][MAXX][10100]; 
int n,m,t; 
int BFS()
{
	int x,y,time;
	struct node N,now;
	N.x = N.y =1;
	N.time = 0;
	q.push(N);
	while(!q.empty())
	{
		now = q.front();
		q.pop();
		x = now.x;
		y = now.y;
		time = now.time;
		if(x==n && y==m)
		{
			return now.time;
		}
		if(x+1<=n && !get[x+1][y][time+1])
		{
			if(time+1>T[x+1][y].end || time+1<T[x+1][y].beg)
			{
				N.x = x+1;
				N.y = y;
				N.time = time+1;
				q.push(N);
				get[x+1][y][time+1] = true;
			}
		}
		
		if(y+1<=m && !get[x][y+1][time+1])
		{
			if(time+1>T[x][y+1].end || time+1<T[x][y+1].beg)
			{
				N.x = x;
				N.y = y+1;
				N.time = time+1;
				q.push(N);
				get[x][y+1][time+1] = true;
			}
		}
		if(x-1>0 && !get[x-1][y][time+1])
		{
			if(time+1>T[x-1][y].end || time+1<T[x-1][y].beg)
			{
				N.x = x-1;
				N.y = y;
				N.time = time+1;
				q.push(N);
				get[x-1][y][time+1] = true;
			}
		}
		if(y-1>0 && !get[x][y-1][time+1])
		{
			if(time+1>T[x][y-1].end || time+1<T[x][y-1].beg)
			{
				N.x = x;
				N.y = y-1;
				N.time = time+1;
				q.push(N);
				get[x][y-1][time+1] = true;
			}
		}
	} 
}
int main()
{
	int x,y,beg,end;
	cin >> n >> m >> t;
	for(int i=0;i<t;i++)
	{
		cin >> x >> y >> beg >> end;
		T[x][y].beg = beg;
		T[x][y].end = end;
	}
	cout << BFS();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值