- 博客(5)
- 资源 (3)
- 收藏
- 关注
原创 线性方程组之五:矩阵形式
大家细细品味之前几回的内容就会发现, 其中的例子中真正起作用的是变量\(x_i\)前的系数, 而和符号\(x_i\)并没有太大的关系. 于是, 为了简(偷)化(懒), 矩阵应运而生.对于线性方程组\[\left\{\begin{split}&a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n = b_1\\&a_{21}x_1+a_{22}x_2...
2019-09-03 21:37:47 6033
原创 线性方程组之四:例子
上回说到求解线性方程组的一般方法: 高斯消去法. 这一回我们来看一些具体的例子, 把高斯消去法练熟. 记得以前有篇课文叫卖油翁, 讲的是一个卖油的老头可以从铜钱的孔里将油倒过去, 而不粘湿钱. 别人都觉得很厉害, 问老头有什么诀窍, 老头说: 无他,唯手熟尔. 学数学也一样, 所谓熟能生巧, 练的多了自然也就会了. 好了, 不说废话了, 我们进入正题.看这个方程组:\[\left\{\b...
2019-09-03 21:36:23 2141
原创 线性方程组之三:线性方程组的解法
之前两回分别介绍了二元一次方程组和三元一次方程组的解法, 那里都是很具体的例子. 可能大家觉得之前太简单了, 没关系, 这一回我们稍微抽象一点, 考虑一般情形. 抽象挑战会大一些, 但确是揭示事情本质的. 如果看完本节觉得一头雾水, 没关系, 不妨先跳过本节, 看看后面几回的例子, 再跳回来看. 如果看完本节觉得很有道理, 那么恭喜你, 有点上路了.为了表示任意多个变量, 我们不再用\(x,y...
2019-09-03 21:34:54 765
原创 线性方程组之二:三元一次方程组
上回讲到二元一次方程组的解法, 一个自然的问题是如何把它推广到更高维度, 比如三元一次方程组怎么解? \(n\)元一次方程组怎么解? 这节先来回答第一个问题.考虑三元一次方程组\[\left\{\begin{split}&x+y+z=6\\&x+2y-z=2\\&2x+3y-2z=2\end{split}\right..\]我们先来尝试加减消元法, ...
2019-09-03 21:32:58 3431
原创 线性方程组之一:从鸡兔同笼问题说起
鸡兔同笼是中国古代的数学名题之一. 大约在1500年前,《孙子算经》中就记载了这个有趣的问题. 书中是这样叙述的.今有雉兔同笼, 上有三十五头, 下有九十四足, 问雉兔各几何?要解决这个问题也很简单, 直接设未知数. 假设鸡有\(x\)只, 兔有\(y\)只. 则根据意思有\[\left\{\begin{split}&x+y=35\\&2x+4y=94\end{...
2019-08-16 21:14:51 1292
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人