- 博客(341)
- 收藏
- 关注

原创 【华为Pura80系列】鸿蒙生态再升级:Pura 80 系列影像突破,WATCH 5 开启智能手表新纪元
2025年6月11日华为Pura80系列及全场景新品发布会,亮点纷呈,Pura 80系列影像与设计出众,WATCH 5功能创新,鸿蒙5.1加持,全场景生态再升级,科技体验迈向新高度。
2025-06-11 21:24:37
1500
55

原创 【华为鸿蒙电脑】首款鸿蒙电脑发布:MateBook Fold 非凡大师 & MateBook Pro,擎云星河计划启动
2025年5月华为发布nova14系列及鸿蒙电脑,MateBook Fold 非凡大师 和 MateBook Pro,并启动擎云计划,公布HarmonyOS 5.0.1升级规划。
2025-05-20 08:00:00
12567
82

原创 【华为Pura先锋盛典】华为Pura X“阔折叠”手机发布:首次全面搭载HarmonyOS 5
华为新生态手机Pura X以16:10阔型屏与AI眼动交互视觉体验登场,首搭HarmonyOS 5实现40%性能跃升,万亿级大模型驱动智能服务进化。红枫四摄开启多光谱影像时代。鸿蒙生态全面冲刺,电脑新品蓄势待发,开启全场景智慧生态新纪元。
2025-03-21 11:15:15
3800
80

原创 【博客之星2024年度总评选】年度回望:我的博客之路与星光熠熠
在过去的2024年里,我经历了许多的挑战和成长,本文主要是回顾我的个人成长历程,以及在创作和日常生活方面的突破,分享我是如何平衡个人生活与博客创作的经验。
2025-01-20 09:30:00
3471
101

原创 【鸿蒙生态崛起,开发者有哪些机遇与挑战?】HarmonyOS NEXT 引领数字化未来
鸿蒙系统不断创新发展,在智能手机、穿戴、车载、家居等行业领域的应用越来越广泛。HarmonyOS NEXT的发布标志着鸿蒙操作系统进入了全新发展阶段,揭示了在智能生态建设方面的最新成果,原生鸿蒙将为全球用户带来更加智能、互联的数字化生活。
2024-11-08 09:00:00
6354
64
原创 【PySpark安装配置】01 搭建单机模式的PySpark开发环境(Windows系统)
本文讲解在Windows系统上搭建可以运行PySpark程序的开发环境。包括安装JDK,安装Anaconda,安装Hadoop,安装MySQL,安装Hive,配置PySpark模块等步骤,最后运行Jupyter Notebook。
2025-06-09 08:00:00
1320
58
原创 【深度学习优化算法】02:凸性
本节讲解了凸函数,目的是帮助我们详细了解优化算法。凸函数的下水平集是凸的。这一性质不仅在数学上具有重要意义,而且在优化问题和机器学习领域也有广泛的应用。通过理解和利用这一性质,我们可以更好地解决实际问题并设计出更高效的算法。
2025-06-04 09:26:32
1616
86
原创 【通义千问】蓝耘元生代 | 免费千万Token!解锁通义Qwen2.5-72B-Instruct自然语言处理新体验
本文详述蓝耘元生代MaaS平台与Qwen2.5-72B-Instruct模型,涵盖平台特性、使用流程,还展示应用实例,新用户可获千万Token,前景可期。
2025-06-02 08:00:00
1810
71
原创 【深度学习优化算法】01:优化和深度学习
本文讲解深度学习优化。深度学习优化旨在最小化损失函数(训练误差),但核心挑战在于平衡训练与泛化误差。优化过程面临三大障碍:局部最小值、鞍点、梯度消失,激活函数饱和区域导致优化停滞,需结合优化算法与正则化策略应对过拟合。
2025-05-30 11:50:12
1402
68
原创 远控安全进阶之战:TeamViewer/ToDesk/向日葵设备安全策略对比
本文选取了当下最热门的TeamViewer、ToDesk、向日葵这三款国内外远程控制代表厂商,从软件介绍、远控安全策略等多个维度展开深入对比,突出ToDesk安全进阶的创新功能“二次验证保护”,呈现一场精彩的远控软件安全进阶“大比拼”。
2025-05-26 08:12:01
6594
98
原创 【金仓数据库】数据库:用户心中的成见是一座大山
文章探讨了数据库选择中的常见误区,特别是对分布式数据库的过度追捧。介绍了金仓数据库如何根据不同业务需求提供定制化解决方案,包括分布式应用、多租户、集中式高可用和真正的分布式数据库需求。
2025-05-21 19:17:14
1229
69
原创 【DeepSeek】蓝耘元生代 | 免费千万Token!蓝耘智算助力DeepSeek-R1开发者生态
本文系统阐述了DeepSeek-R1与蓝耘MaaS平台协同创新,提供免费Token资源,助推AI生态链发展。蓝耘MaaS平台作为模型即服务的先行者,提供了丰富的预训练模型库,用户可通过平台轻松调用DeepSeek-R1模型进行文案生成、代码编写等任务。
2025-05-18 12:28:44
3517
80
原创 【现代深度学习技术】注意力机制07:Transformer
Transformer基于自注意力和位置编码,采用编码器-解码器架构。编码器和解码器通过堆叠多头注意力层和前馈网络构成,利用残差连接和层规范化提升训练效果,在并行计算和短依赖路径优势下,广泛应用于序列任务如机器翻译。
2025-05-15 10:00:36
2599
77
原创 【现代深度学习技术】注意力机制06:自注意力和位置编码
本文讲解自注意力和位置编码。自注意力通过并行处理全局依赖,结合正弦/余弦位置编码注入序列位置信息,虽计算复杂度高,但路径短,克服了RNN/CNN的顺序限制,有效捕获长距离关系。
2025-05-12 09:19:53
1288
50
原创 【现代深度学习技术】注意力机制05:多头注意力
本文讲解注意力机制的多头注意力。通过并行学习多组线性投影,将查询、键和值映射到不同子空间,每个头独立计算注意力后拼接结果,再经线性变换融合不同关注模式,从而捕捉序列中多样化的依赖关系。
2025-05-12 08:56:09
1697
50
原创 【现代深度学习技术】注意力机制04:Bahdanau注意力
本文讲解注意力机制中的Bahdanau注意力。Bahdanau注意力机制通过动态调整上下文变量,在解码时使用加性注意力聚焦编码器隐状态的相关部分,替代固定上下文,提升机器翻译的准确性和对齐效果。
2025-05-10 09:04:36
1305
49
原创 【现代深度学习技术】注意力机制03:注意力评分函数
本文讲解注意力评分函数。加性注意力通过MLP处理不同长度查询键,缩放点积注意力利用点积和√d缩放提升效率。掩蔽softmax过滤无效位置,结合加权值实现注意力汇聚,代码演示权重分布,为复杂模型奠定基础。
2025-05-09 21:59:45
1386
32
原创 【现代深度学习技术】注意力机制02:注意力汇聚:Nadaraya-Watson核回归
本节通过Nadaraya-Watson核回归演示注意力机制:首先生成非线性数据集,对比平均汇聚的局限性;引入非参数注意力模型,使用高斯核计算权重实现平滑预测;扩展为带参数模型,通过可学习权重调整注意力分布,但可能过拟合导致预测波动。实验显示参数模型注意力权重更集中但预测欠平滑。
2025-05-07 10:42:36
1069
45
原创 【现代深度学习技术】注意力机制01:注意力提示
本文讲解注意力机制中的注意力提示。注意力是稀缺资源,通过自主(查询)与非自主(键)提示引导,机制将感官输入(值)加权汇聚,热图可视化权重分配。
2025-05-06 09:42:30
1185
55
原创 【现代深度学习技术】现代循环神经网络08:束搜索
本文讲解现代循环神经网络中的束搜索。贪心搜索逐步选最高概率词元,可能非全局最优;穷举搜索遍历所有组合,计算成本过高;束搜索维护k个候选序列,平衡效率与精度,通过评分公式优选最佳输出。
2025-05-05 11:02:49
1068
36
原创 【现代深度学习技术】现代循环神经网络07:序列到序列学习(seq2seq)
本文讲解现代循环神经网络中的序列到序列学习。seq2seq模型采用RNN编码器将变长序列编码为隐状态,解码器基于隐状态逐步生成输出。训练时使用遮蔽损失忽略填充词元,BLEU评估翻译质量。应用于机器翻译,通过教师强制策略训练,预测时逐词生成并用注意力机制优化结果。
2025-05-05 10:24:21
1975
49
原创 【现代深度学习技术】现代循环神经网络06:编码器-解码器架构
本文讲解现代循环神经网络的“编码器-解码器”架构。“编码器-解码器”架构可以将长度可变的序列作为输入和输出,因此适用于机器翻译等序列转换问题。将长度可变的序列作为输入,并将其转换为具有固定形状的编码状态。将具有固定形状的编码状态映射为长度可变的序列。
2025-05-04 12:18:18
1932
33
原创 【现代深度学习技术】现代循环神经网络05:机器翻译与数据集
本文讲解现代循环神经网络地机器翻译与数据集。机器翻译指的是将文本序列从一种语言自动翻译成另一种语言。使用单词级词元化时的词表大小,将明显大于使用字符级词元化时的词表大小。为了缓解这一问题,我们可以将低频词元视为相同的未知词元。通过截断和填充文本序列,可以保证所有的文本序列都具有相同的长度,以便以小批量的方式加载。
2025-05-04 12:06:22
1325
37
原创 【现代深度学习技术】现代循环神经网络04:双向循环神经网络
本文讲解了双向循环神经网络。从序列学习扩展场景切入,详述隐马尔可夫模型动态规划解法,引申双向循环神经网络架构、定义、计算代价、典型应用,并给出错误应用示例与风险警示,凸显实践要点。
2025-05-03 08:00:00
1829
40
原创 【现代深度学习技术】现代循环神经网络03:深度循环神经网络
本文讲解深度循环神经网络。通过堆叠多个隐藏层增强表达能力,每层隐状态传递至下一时间步和相邻层,使用激活函数处理输入及前序状态,PyTorch实现多层LSTM时因参数增多导致训练速度下降。
2025-05-02 08:00:00
1315
45
原创 【现代深度学习技术】现代循环神经网络02:长短期记忆网络(LSTM)
本文讲解现代循环神经网络中的长短期记忆网络(LSTM),通过输入门、遗忘门、输出门和记忆元解决长短期依赖问题,结构较GRU复杂但提出更早,支持从零实现和框架简洁调用。
2025-05-01 11:35:30
1362
38
原创 【现代深度学习技术】现代循环神经网络01:门控循环单元(GRU)
本文讲解现代循环神经网络中的门控循环单元(GRU),包括原理、数学表达、从零实现及简洁实现,以解决RNN梯度问题。
2025-05-01 10:58:04
1038
47
原创 【现代深度学习技术】循环神经网络07:通过时间反向传播
本文讲解循环神经网络的通过时间反向传播。RNN梯度分析及BPTT是理解其原理的关键,通过深入分析RNN的梯度计算过程,我们可以更好地理解梯度爆炸和梯度消失的问题,BPTT可有效训练RNN捕捉序列依赖。
2025-04-28 09:43:20
1463
51
原创 【现代深度学习技术】循环神经网络06:循环神经网络的简洁实现
本文讲解循环神经网络的简洁实现。展示用深度学习框架高级API高效实现循环神经网络语言模型,包括模型定义、训练及预测,效果优于从零实现。
2025-04-25 09:54:39
2076
59
原创 【现代深度学习技术】循环神经网络05:循环神经网络的从零开始实现
本文讲解循环神经网络的从零开始实现。基于《时间机器》数据集,从零实现字符级循环神经网络语言模型。涵盖独热编码、参数初始化、RNN前向传播、梯度截断及训练过程。通过顺序和随机采样策略,演示模型训练与文本生成,使用困惑度评估性能,对比不同方法的收敛效果。
2025-04-21 09:47:39
1735
65
原创 【现代深度学习技术】循环神经网络04:循环神经网络
本文讲解现代深度学习技术的循环神经网络。RNN通过隐状态捕获序列历史信息,避免传统n元语法参数指数增长问题。其隐状态由当前输入和前步状态计算,用于语言模型等任务,困惑度衡量预测质量,值越低模型越优。
2025-04-19 09:29:48
1644
60
原创 【现代深度学习技术】循环神经网络03:语言模型和数据集
本文讲解循环神经网络中的语言模型和数据集。语言模型估计序列概率,传统n元语法受数据稀疏性限制,转向深度学习。随机采样和顺序分区处理长文本,词频遵循齐普夫定律,长尾分布挑战模型训练。
2025-04-16 13:29:09
1939
63
原创 【ComfyUI】蓝耘元生代 | ComfyUI深度解析:高性能AI绘画工作流实践
蓝耘元生代平台依托ComfyUI节点式AI工作流引擎,以高自由度、灵活定制和高效生成能力为核心,提供可视化编程与GPU算力云服务,支持AI绘画、科研实验及内容创作等场景,其组件化架构与扩展性优势显著,赋能用户实现高效定制化AI开发。
2025-04-14 12:09:02
3257
65
原创 【PySpark大数据分析概述】03 PySpark大数据分析
本文介绍了PySpark大数据分析。PySpark是Apache Spark为Python提供的API,结合Python库与Spark能力,支持单机与集群运行,包含多个核心类与模块,如公共类、SQL模块、Streaming模块、MLlib和ML包等。
2025-04-12 15:14:14
1721
51
原创 【现代深度学习技术】循环神经网络02:文本预处理
本文讲解了循环神经网络中文本预处理的四个步骤:加载文本数据并清洗,拆分为词元,构建词表,转换为数字序列。通过《时光机器》示例,展示了代码实现,包括数据读取、正则处理、词频统计及索引转换,为模型提供数值化输入。
2025-04-09 12:03:17
7329
72
原创 【现代深度学习技术】循环神经网络01:序列模型
本文讲解循环神经网络中的序列模型。时间序列分析中,自回归模型利用历史数据预测未来,单步预测效果良好,但多步预测因误差累积导致准确性显著下降,突显序列动态变化及预测挑战。
2025-04-07 10:32:44
1318
50
原创 【PySpark大数据分析概述】02 Spark大数据技术框架
本文讲解Spark大数据技术架构。Spark是开源通用并行计算框架,具多种特性,有特定运行架构与流程,核心是RDD,生态圈以Spark Core为中心,满足多样计算需求。
2025-04-06 10:06:59
2184
20
原创 【现代深度学习技术】现代卷积神经网络07:稠密连接网络(DenseNet)
本文讲解现代卷积神经网络中的稠密连接网络(DenseNet)。DenseNet通过稠密连接各层输出,促进特征重用,减少参数量。其结构包含稠密块和过渡层,有效控制复杂度。相比ResNet的相加,连接操作增强信息流动,提升模型性能。实验显示在Fashion-MNIST上训练高效。
2025-04-03 09:00:00
1993
62
原创 【现代深度学习技术】现代卷积神经网络06:残差网络(ResNet)
ResNet通过残差块设计解决深层网络训练难题,允许跨层恒等映射,缓解梯度消失。其核心为残差学习,每个块拟合目标与输入的差值,使优化更易。ResNet-18等模型通过堆叠残差块实现,在ImageNet等任务中表现优异,推动深度学习发展。
2025-03-31 10:09:05
2205
73
【机器学习&数据挖掘】离群点检测-源代码+数据集
2025-01-13
【机器学习&数据挖掘】时间序列算法-源代码+数据集
2024-12-31
【机器学习&数据挖掘】智能推荐算法-源代码+数据集
2024-12-28
Python数据分析实验三(基于Scikit-Learn构建数据分析模型)数据集
2024-05-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人