深度学习
文章平均质量分 92
WhyNotFocus
From Qust to Seu!Major in Automation!
展开
-
python下利用Mxnet实现MTCNN的人脸检测功能(直接调用模型)以及成批crop保存视频帧的时候出现的视频帧倒立,缺失等问题的解决
原文章设置成了私密,想了解的联系我qq:1421518592这全套功能代码我花了好几天时间下面发几张效果截图:原创 2020-11-10 11:03:12 · 224 阅读 · 0 评论 -
数据集的evaluation protocol是什么
举个例子:比如oulu-npu数据集的介绍如下:Evaluation protocolsFor the evaluation of the generalization capability of the face PAD methods, four protocols are used.Protocol I:The first protocol is designed to evaluate the generalization of the face PAD methods under pre原创 2020-11-08 20:03:36 · 1498 阅读 · 0 评论 -
从视频中抽取视频帧并保存
知乎链接1. 第一步下载opencv先激活虚拟环境:conda activate pytorch_gpu(pytorch_gpu) C:\Users\14215>pip install opencv-python==3.4.1.15Collecting opencv-python==3.4.1.15 Downloading opencv_python-3.4.1.15-cp36-cp36m-win_amd64.whl (33.6 MB) |████████████████████原创 2020-11-08 19:51:51 · 1237 阅读 · 2 评论 -
初入领域自适应DomainAdaptation
15年的文章:Unsupervised Domain Adaptation by BackpropagationDomainAdatation的定义Learning a discriminative classifier or other predictor in the presence of a shift between training and test distributions is known asdomain adaptation(DA).在训练分布和测试分布之间发生变化原创 2020-11-05 10:45:51 · 1389 阅读 · 0 评论 -
Pytorch && GAN
这篇文章必看为了防止网页失效,我还是打算复制一下本人公众号:算法的秘密 聚焦面试中各种算法题,欢迎关注知乎上有个讨论,说学数学的看不起搞深度学习的。曲直对错不论,他们看不起搞深度学习的原因很简单,因为从数学的角度看,深度学习仅仅是一个最优化问题而已。比如,被炒的很热的对抗式生成网络(GAN),从数学看,基本原理很容易就能说明白,剩下的仅仅是需要计算资源去优化参数,是个体力活。本文的目的就是尽可能简单地从数学角度解释清楚GAN的数学原理,看清它的庐山真面目。1,从生成模型说起机器学习的模型可分为生翻译 2020-11-02 14:58:05 · 651 阅读 · 0 评论 -
三元组损失tripletloss
先验知识题外话(来自网络):(最近,learning to rank 的思想逐渐被应用到很多领域,比如google用来做人脸识别(faceNet),微软Jingdong Wang 用来做 person-reid 等等。learning to rank中其中重要的一个步骤就是找到一个好的similarity function,而triplet loss是用的非常广泛的一种。)对于输入x,经过网络A后得到f(x)相当于从特征x映射到特征空间R1在R1中,我们可以比较两个特征向量f(x1)和f(x2)之原创 2020-11-02 10:21:17 · 15681 阅读 · 6 评论 -
模型的保存与还原
有没有想过一个需要训练一个礼拜的模型到最后一天突然断电了那怎么办?思路可能是多少步保存一下模型参数,即不能训练结束之后才保存一般目录可能会出错的有最后要以/结尾比如上面如果是./ckpt_dir就会报错还有/等价于\还有.表示当前目录os.path.join函数format函数...翻译 2020-03-06 23:49:22 · 316 阅读 · 0 评论 -
激活函数 softmax_cross_entropy_with_logits的作用:1包括softmax ;2避免log0 结构化全连接层
如果使用了这个损失函数由于它结合了softmax所以就不需要额外自己进行softmax操作这里依然计算了pred,是因为算准确率的时候需要用到这里依然计算了pred,是因为算准确率的时候需要用到这里依然计算了pred,是因为算准确率的时候需要用到为了解决上面的重复问题可以定义相应的框架函数为了解决上面的重复问题可以定义相应的框架函数...翻译 2020-03-06 23:17:55 · 196 阅读 · 0 评论 -
一个神经元处理mnist手写数字 one-hot编码 二元逻辑回归损失函数-对数损失函数 多元逻辑回归损失函数-交叉熵损失函数 两个东西很像 argmax
原来是2828现在是1456绿色部分:如果不采用one-hot编码,3-1<8-3,难道1比8更相似于3,明显不是直白解释逻辑回归中的损失函数:如果标签是1,我们希望预测也是1这里时候后一项没了,y’越接近1对应的损失函数值越小如果标签是0,我们希望预测也是0这里时候前一项没了,y’越接近0对应的损失函数值越小而且是一个凸函数,说明必有全局最优解而且...翻译 2020-03-06 22:27:20 · 265 阅读 · 0 评论 -
Tensorflow多元线性回归之波士顿房价预测
可以看出来特征是二维数组,而标签是一维数组可以看出来特征是二维数组,而标签是一维数组可以看出来特征是二维数组,而标签是一维数组大致意思:一道菜可能需要1000克水,5克盐所以水前面的系数会小,盐前面的系数会大,我现在考虑的是线性回归,即多个特征的线性组合为了避免这种情况我们可以使用归一化即将原始值限制在0到1之间1000克水去掉5克...翻译 2020-03-06 18:53:06 · 1142 阅读 · 0 评论 -
线性回归 tensorflow实战 概念准备
比如一个图片分类的任务使用神经网络来完成假设有10000张图片用来训练则这10000张图片就是样本每张图片的尺寸是32323则特征就是32323维标签就是图片对应的分类模型就是训练完之后得到的神经网络(权重偏置得到训练)我的潜意识是求垂直距离这是不对的这是因为昨天学习感知机模型的缘故感知机模型是二分类,是分类问题这里是线性回归这里的误差就是纵坐标的差所有...翻译 2020-03-03 23:45:12 · 127 阅读 · 0 评论 -
tensorflow中的卷积神经网络的padding的两种方式
简介卷积之后的尺寸大小计算公式为:输入图片大小 W×WFilter大小 F×F步长strides Spadding的像素数 P输出大小为NxN长宽不等时,卷积之后的计算公式也是如此,只需分别计算即可。在实际操作时,我们还会碰到 padding的两种方式 “SAME” 和 “VALID”,padding = “SAME”时,会在图像的周围填 “0”,padding = “VALI...转载 2020-02-26 14:34:55 · 430 阅读 · 0 评论 -
Tensorflow的gpu版本使用
根据前文首先要自己新建一个python环境然后进入该环境使用pip install tensorflow-gpu==1.11 -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com我这里用的1.11版本当然要想使用GPU版本的tensorflow只有tensorflow还不行还得安装CUDA和cuDNN这三者...翻译 2020-02-26 13:19:46 · 1890 阅读 · 0 评论 -
深度学习发展史
神经元是神经网络的基本单元神经元是神经网络的基本单元神经元是神经网络的基本单元这里听到了一点:激活函数为什么叫激活函数,而不叫其他的名字因为参考的是生物体的神经元神经元需要的是电刺激达到某个阈值才会做出反应,所以叫激活一般的激活函数都是将值域限制在很小的范围内这样很合理,因为不限制的话很可能会随着层数的增加导致输出值越来越大一般的激活函数都是非线性这样很合理,因为很多问题不...翻译 2020-02-25 13:34:04 · 261 阅读 · 0 评论 -
深度学习当前的问题!!!
1.面向任务单一,即图像识别的网络不能用来语音识别2.需要大量的带标签的数据3.不具备解释性原创 2020-02-25 12:46:11 · 483 阅读 · 0 评论