【DS】9.常用排序算法大总结【下】!!

由于我很少见非比较类排序算法桶排序和基数排序的考察,所以我这里重点分析计数排序,另外两种以分析思想为主,参考中有代码,了解即可。

如若后序使用的多了,再进行补充.

一、计数排序(CountSort)

思路分析

①找出待排序数组中的最大和最小的元素②开辟max-min+1大小的计数数组③统计原数组中每个值为i的元素出现的次数,存入计数数组countArr的第i项④遍历计数数组,反向填充原数组。【具体填充方法:例如计数数组countArr[99]=5,放进原数组里一次,countArr[99]就减减】

动图演示

在这里插入图片描述

代码实现
public static void countSort(int[]array){
    //1.遍历数组,找到数组的最大值和最小值——确定计数数组的大小
    int maxVal=array[0];
    int minVal=array[0];
    for (int i = 0; i < array.length; i++) {
        if(array[i]>maxVal){
            maxVal=array[i];
        }
        if(array[i]<minVal){
            minVal=array[i];
        }
    }
    //2.确定计数数组大小
    int[]countArr=new int[maxVal-minVal+1];
    //3.遍历元素,开始计数
    for (int i = 0; i < array.length; i++) {
        countArr[array[i]-minVal]++;
    }
    //4.遍历计数数组,将值再次赋给原来的数组
    int k=0;
    for (int i = 0; i < countArr.length; i++) {
        while(countArr[i]>0){
            array[k++]=i+minVal;
            countArr[i]--;
        }
    }
}
算法效率分析

时间复杂度:O(n+范围)【主要体现在最后一个循环上边】

空间复杂度:O(范围)

稳定性:不稳定

使用前提及应用场景

使用前提:输入的数据必须是有确定范围的整数

应用场景:一般是集中分布一定范围内的整形数据的统计

二、桶排序(BucketSort)

示例分析(含详细步骤拆分图)

其实桶排序没有确切的定义,思想也不好描述,如果非要说核心思想,那就是“划分多个范围相同的区间,每个子区间自排序,最后合并”。

但是只放这一句话可能不好理解,下边我们举个例子。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-y6DX3B4t-1666494072982)(F:\typora插图\image-20221023092807300.png)]

算法效率分析

时间复杂度:O(n+C)

空间复杂度:O(n(临时数组)+桶的个数)【常数个】

稳定性:不确定,取决于桶内部排序使用的算法

三、基数排序(RadixSort)

示例分析(含详细步骤拆分图及动图演示)

基本原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。

还是和上边一样,我们来举个例子。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NuASv07F-1666494072983)(F:\typora插图\image-20221023095745476.png)]

在这里插入图片描述

①个位数是什么放到对应的桶②按顺序拿出来,再次按照十位数拿③按顺序拿出来,按照百位放④如果最大值只有3位数,就结束了

个十百位的优先级的应用

补充:元素是负数时的处理思路

有负数时处理思路:先判断有无负数 有则找到最小值 数组所有数据都减去该值 也就是数组最小值会变为0 接下来按正整数排序 最后数组所有数据加上原最小数 变为原有数据值】

四、三种非比较类排序算法的异同及内部联系

  1. 桶排序和计数排序都需要找最大最小值,基数排序只需要找最大值
  2. 计数排序的数学原理是鸽巢原理,因此也叫作鸽巢排序。
  3. 基数排序是桶排序的扩展,也就是说基数排序也是桶排序。
  4. 基数排序使用的是序列的元素的位数,桶排序和计数排序使用的是序列元素的范围。
  5. 三者一般用于整数的排序。

五、再次总结

算法优劣对比【优化后】

排序算法最坏时间复杂度最好时间复杂度平均时间复杂度空间复杂度
冒泡排序O(n^2)O(n)O(n^2)O(1)
选择排序O(n^2)O(n^2)O(n^2)O(1)
插入排序O(n^2)O(n^2)O(n^2)O(1)
快速排序O(n * logn)O(n * logn)O(n * logn)O(logn)
堆排序O(n * log(n))O(n * log(n))O(n * log(n))O(1)
希尔排序----------O(n^1.3)O(1)
归并排序O(nlogn)O(nlogn)O(nlogn)O(n)
计数排序O(n+范围)----------O(范围)
基数排序----------O(n)O(n+范围)
桶排序----------O(n)O(n+范围)

在这里插入图片描述

参考

基数排序 java代码

桶排序参考

参考

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值