由于我很少见非比较类排序算法桶排序和基数排序的考察,所以我这里重点分析计数排序,另外两种以分析思想为主,参考中有代码,了解即可。
如若后序使用的多了,再进行补充.
文章目录
一、计数排序(CountSort)
思路分析
①找出待排序数组中的最大和最小的元素②开辟max-min+1大小的计数数组③统计原数组中每个值为i的元素出现的次数,存入计数数组countArr的第i项④遍历计数数组,反向填充原数组。【具体填充方法:例如计数数组countArr[99]=5,放进原数组里一次,countArr[99]就减减】
动图演示
代码实现
public static void countSort(int[]array){
//1.遍历数组,找到数组的最大值和最小值——确定计数数组的大小
int maxVal=array[0];
int minVal=array[0];
for (int i = 0; i < array.length; i++) {
if(array[i]>maxVal){
maxVal=array[i];
}
if(array[i]<minVal){
minVal=array[i];
}
}
//2.确定计数数组大小
int[]countArr=new int[maxVal-minVal+1];
//3.遍历元素,开始计数
for (int i = 0; i < array.length; i++) {
countArr[array[i]-minVal]++;
}
//4.遍历计数数组,将值再次赋给原来的数组
int k=0;
for (int i = 0; i < countArr.length; i++) {
while(countArr[i]>0){
array[k++]=i+minVal;
countArr[i]--;
}
}
}
算法效率分析
时间复杂度:O(n+范围)【主要体现在最后一个循环上边】
空间复杂度:O(范围)
稳定性:不稳定
使用前提及应用场景
使用前提:输入的数据必须是有确定范围的整数
应用场景:一般是集中分布一定范围内的整形数据的统计
二、桶排序(BucketSort)
示例分析(含详细步骤拆分图)
其实桶排序没有确切的定义,思想也不好描述,如果非要说核心思想,那就是“划分多个范围相同的区间,每个子区间自排序,最后合并”。
但是只放这一句话可能不好理解,下边我们举个例子。
算法效率分析
时间复杂度:O(n+C)
空间复杂度:O(n(临时数组)+桶的个数)【常数个】
稳定性:不确定,取决于桶内部排序使用的算法
三、基数排序(RadixSort)
示例分析(含详细步骤拆分图及动图演示)
基本原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
还是和上边一样,我们来举个例子。
①个位数是什么放到对应的桶②按顺序拿出来,再次按照十位数拿③按顺序拿出来,按照百位放④如果最大值只有3位数,就结束了
个十百位的优先级的应用
补充:元素是负数时的处理思路
有负数时处理思路:先判断有无负数 有则找到最小值 数组所有数据都减去该值 也就是数组最小值会变为0 接下来按正整数排序 最后数组所有数据加上原最小数 变为原有数据值】
四、三种非比较类排序算法的异同及内部联系
- 桶排序和计数排序都需要找最大最小值,基数排序只需要找最大值
- 计数排序的数学原理是鸽巢原理,因此也叫作鸽巢排序。
- 基数排序是桶排序的扩展,也就是说基数排序也是桶排序。
- 基数排序使用的是序列的元素的位数,桶排序和计数排序使用的是序列元素的范围。
- 三者一般用于整数的排序。
五、再次总结
算法优劣对比【优化后】
排序算法 | 最坏时间复杂度 | 最好时间复杂度 | 平均时间复杂度 | 空间复杂度 |
---|---|---|---|---|
冒泡排序 | O(n^2) | O(n) | O(n^2) | O(1) |
选择排序 | O(n^2) | O(n^2) | O(n^2) | O(1) |
插入排序 | O(n^2) | O(n^2) | O(n^2) | O(1) |
快速排序 | O(n * logn) | O(n * logn) | O(n * logn) | O(logn) |
堆排序 | O(n * log(n)) | O(n * log(n)) | O(n * log(n)) | O(1) |
希尔排序 | ----- | ----- | O(n^1.3) | O(1) |
归并排序 | O(nlogn) | O(nlogn) | O(nlogn) | O(n) |
计数排序 | O(n+范围) | ----- | ----- | O(范围) |
基数排序 | ----- | ----- | O(n) | O(n+范围) |
桶排序 | ----- | ----- | O(n) | O(n+范围) |