算法|1.二分及其扩展

文章介绍了如何利用二分法解决有序数组中的查找问题,包括找到指定数字、大于等于指定数字的最左边位置以及小于等于指定数字的最右边位置。同时,文章提出了寻找局部最小值的解题思路,强调了边界条件和比较逻辑的重要性,并提供了相应的优化和测试案例。
摘要由CSDN通过智能技术生成

算法|1.二分及其扩展

1、有序数组中找到num

题意:给定有序数组,在有序数组中找到指定数字,找到返回true,找不到返回false.

解题思路:

  • 数组有序查找指定元素使用二分法
  • L指针初始值设为0,R指针初始值设为arr.length-1,属于左闭右闭的区间,循环条件为L<=R

优化的点:

  • 求平均值使用有符号右移:mid=left+((right-left)>>1).好处有两点1.防止溢出2.提高效率

对数器:

  • 使用顺序遍历
  • 前提:生成随机数组

核心代码:

public static boolean exist(int[] arr,int num){
    int L=0;
    int R=arr.length-1;
    int M=L+((R-L)>>1);
    while(L<=R){
        if(arr[M]<num){
            L=M+1;
        }else if(arr[M]>num){
            R=M-1;
        }else{
            return true;
        }
        M=L+((R-L)>>1);
    }
    return false;
}

测试代码:

    //for test
    public static boolean test(int[] arr,int num){
        for (int cur:arr) {
            if(cur==num){
                return true;
            }
        }
        return false;
    }
    //for test
    public static int[] generateRandomArray(int maxSize,int maxValue){
        int[] arr=new int[(int) ((maxSize+1)*Math.random())];
        for (int i = 0; i < arr.length; i++) {
            arr[i]= (int) ((maxValue+1)*Math.random())-(int) ((maxValue+1)*Math.random());
        }
        return arr;
    }

    //for test
    public static void print(int[] arr){
        for (int cur:arr) {
            System.out.print(cur+" ");
        }
        System.out.println();
    }
//    //for test
    public static void main(String[] args) {
        int testTime=1000;
        int maxSize=10;
        int maxValue=100;
        boolean succeed=true;
        for (int i = 0; i < testTime; i++) {
            int[] arr=generateRandomArray(maxSize,maxValue);
            int num=(int) ((maxValue+1)*Math.random());

            //使用前提:数组是有序的
            Arrays.sort(arr);

            boolean ret1=exist(arr,num);
            boolean ret2=test(arr,num);
            if(ret1!=ret2){
                print(arr);
                System.out.println("num:"+num);
                System.out.println("exist:"+ret1);
                System.out.println("test:"+ret2);
                System.out.println("Oops!Error!");
                succeed=false;
                break;
            }
        }
        if(succeed==true){
            System.out.println("succeed!");
        }
    }

测试结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0HyhetxX-1685076234668)(F:\typora插图\image-20230526103704932.png)]

果然,人长时间不写代码,脑子是会秀逗的(…)

你敢信这是一开始写的??真该死啊…

public static boolean exist(int[] arr,int num){
    int L=0;
    int R=arr.length-1;
    int M=L+((R-L)>>1);
    while(L<=R){
        if(arr[L]<num){
            L=M+1;
        }else if(arr[R]>num){
            R=M-1;
        }else{
            return true;
        }
        M=L+((R-L)>>1);
    }
    return false;
}

还debug半天反应不过来

    //for test
    //1.使用前提:必须是有序的
    //2.sort排序不生效——得是M和Num比啊!!!
//    public static void main(String[] args) {
//        int[] arr={-15, -14 ,4 ,24, 26, 33, 81  };
//        Arrays.sort(arr);
//        if(exist(arr,4)!=test(arr,4)){
//            System.out.println(false);
//        }else{
//            System.out.println(true);
//
//        }
//    }

2、有序数组中找到>=num的最左边的位置

题意:给定有序数组,在有序数组中找到>=指定数字的最左边的下标,找到返回对应值,找不到返回-1.

解题思路:

  • 注意:这里并没有要求value值必须存在于指定数组
  • 数组有序查找指定元素下标使用二分法
  • 在原来的基础上增加一个变量记录当前查找元素下标,如果当前值大于等于指定值,则记录下标。最终返回的结果只可能是两种值-1,符合题意的值

优化思路:

  • 没有采用在上一题的基础上增加变量记录当前坐标,然后再对这个坐标进行操作,而是直接在分支条件上动手,记录并迭代更新,这样只需要在返回处进行判断是否存在这样的值即可。

对数器:

  • 顺序遍历

核心代码:

public static int nearestIndex(int[] arr,int num){
    int L=0;
    int R=arr.length-1;
    int M=L+((R-L)>>1);
    int index=-1;
    while(L<=R){
        if(arr[M]>=num){
            index=M;
            R=M-1;
        }else{
            L=M+1;
        }
        M=L+((R-L)>>1);
    }
    return index;
}

测试代码:

基本同上,但是需要修改比对方法和核心方法的返回值

//for test
public static int test(int[] arr,int num){
    for (int i = 0; i < arr.length; i++) {
        if(arr[i]>=num){
            return i;
        }
    }
    return -1;
}
//for test
public static int[] generateRandomArray(int maxSize,int maxValue){
    int[] arr=new int[(int) ((maxSize+1)*Math.random())];
    for (int i = 0; i < arr.length; i++) {
        arr[i]= (int) ((maxValue+1)*Math.random())-(int) ((maxValue+1)*Math.random());
    }
    return arr;
}

//for test
public static void printArray(int[] arr){
    for (int cur:arr) {
        System.out.print(cur+" ");
    }
    System.out.println();
}
//    //for test
public static void main(String[] args) {
    int testTime=1000;
    int maxSize=10;
    int maxValue=100;
    boolean succeed=true;
    for (int i = 0; i < testTime; i++) {
        int[] arr=generateRandomArray(maxSize,maxValue);
        int num=(int) ((maxValue+1)*Math.random());

        //使用前提:数组是有序的
        Arrays.sort(arr);

        int ret1=nearestIndex(arr,num);
        int ret2=test(arr,num);
        if(ret1!=ret2){
            printArray(arr);
            System.out.println("num:"+num);
            System.out.println("nearestIndex:"+ret1);
            System.out.println("test:"+ret2);
            System.out.println("Oops!Error!");
            succeed=false;
            break;
        }
    }
    if(succeed==true){
        System.out.println("succeed!");
    }
}

测试结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NOHyBbMu-1685076234669)(F:\typora插图\image-20230526110446203.png)]

3、有序数组中找到<=num最右的位置

题意:给定有序数组,在有序数组中找到<=指定数字的最右边的下标,找到返回对应值,找不到返回-1.

解题思路:

  • 数组有序,查找指定元素下标==>二分
  • 在分支条件上动手

优化思路:

  • 在分支条件上动手,同上题,合并两个分支条件,index初值设为-1

核心代码:

public static int nearestIndex(int[] arr,int num){
    int L=0;
    int R=arr.length-1;
    int M=L+((R-L)>>1);
    int index=-1;
    while(L<=R){
        if(arr[M]<=num){
            index=M;
            L=M+1;
        }else{
            R=M-1;
        }
        M=L+((R-L)>>1);
    }
    return index;
}

测试代码:

基本同上,但是注意这次对数器方法需要倒序遍历,找到返回,找不到返回-1

//for test
public static int test(int[] arr,int num){
    for (int i = arr.length-1; i >= 0; i--) {
        if(arr[i]<=num){
            return i;
        }
    }
    return -1;
}
//for test
public static int[] generateRandomArray(int maxSize,int maxValue){
    int[] arr=new int[(int) ((maxSize+1)*Math.random())];
    for (int i = 0; i < arr.length; i++) {
        arr[i]= (int) ((maxValue+1)*Math.random())-(int) ((maxValue+1)*Math.random());
    }
    return arr;
}

//for test
public static void printArray(int[] arr){
    for (int cur:arr) {
        System.out.print(cur+" ");
    }
    System.out.println();
}
//    //for test
public static void main(String[] args) {
    int testTime=1000;
    int maxSize=10;
    int maxValue=100;
    boolean succeed=true;
    for (int i = 0; i < testTime; i++) {
        int[] arr=generateRandomArray(maxSize,maxValue);
        int num=(int) ((maxValue+1)*Math.random());

        //使用前提:数组是有序的
        Arrays.sort(arr);

        int ret1=nearestIndex(arr,num);
        int ret2=test(arr,num);
        if(ret1!=ret2){
            printArray(arr);
            System.out.println("num:"+num);
            System.out.println("nearestIndex:"+ret1);
            System.out.println("test:"+ret2);
            System.out.println("Oops!Error!");
            succeed=false;
            break;
        }
    }
    if(succeed==true){
        System.out.println("succeed!");
    }
}

测试结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-A9n5RfAR-1685076234670)(F:\typora插图\image-20230526110946676.png)]

4、局部最小值

题意:给定一个数组,已知任一相邻的数都不相等,找到随便一个局部最小值返回。

局部最小值定义:

定义何为局部最小值:
arr[0] < arr[1],0位置是局部最小;
arr[N-1] < arr[N-2],N-1位置是局部最小;
arr[i-1] > arr[i] < arr[i+1],i位置是局部最小;

解题思路:

  • 注意:1.是下标不是值2.边界条件判断:空数组、长度为1的数组、两端判断、中间判断,一共四部分逻辑处理!!!
  • 闭存在与不存在:是不是存在“凹”结构
  • 需要有左右两边淘汰的逻辑,使用二分
  • 遍历范围为可能成为局部最小值的位置:边界位置只需要比较一个位置而中间位置需要比较两个位置,为了统一处理,边界符合条件时单独判断,中间位置使用L、R、M三个指针进行遍历
  • (大体)分支条件的判断从原来的M下标和num比,改成M和M-1及M和M+1比较,两个需要调整的条件都是>,反之就是符合条件的局部最小值
  • (具体到某个分支)每次判断都是为砍范围,缩小范围与另外一边重新构成凹结构,砍到没法再砍了,直接返回对应下标(多结合实例)
    在这里插入图片描述

优化思路:

  • 使用二分法,运用左右淘汰的逻辑
  • 每次三次比较到经典二分三次比较的套用

对数器:

  • 遍历?错

    可能存在多个局部最小值,所以不能通过比对返回的下标,而是拿着下标去验证是不是!!

    当然再次之前需要判断下标是否合法

    这里的对数器可以命名为isRight,返回值为布尔类型

    优化

    • 可以根据index分类讨论:中间有效性、两端有效性
    • 中间index判断可以用三目表达式

核心代码:

注意调整新三分支中的调整条件:

Q1:每次怎么调整?既然没有要求数组有序,那是不是只要mid可以改变就可以,是不是L=M+1和R=M-1的调整条件可以交换?

不是!!

经过开头的预处理,说明该数组上一定存在“凹”结构,那么如果M左边的位置小于它,那么就破坏了整体的这个结构,我们就从右边找,此时右边的结构满足,对应的左边的结构满足,每次把破坏结构的一半砍下去,也一定能够找出来。

Q2:这样一定能找出结果吗?

能的,这是一个算法的结论:即不存在相同元素的数组,一定存在局部最小值

public static int getLessIndex(int[] arr){
    if(arr==null||arr.length==0){
        return -1;
    }
    if(arr.length==1||arr[0]<=arr[1]){
        return 0;
    }
    if(arr[arr.length-1]<=arr[arr.length-2]){
        return arr.length-1;
    }
    int L=1;
    int R=arr.length-2;
    int M=L+((R-L)>>1);
    while(L<=R){
        if(arr[M]>arr[M-1]){//砍左边
            R=M-1;
        }else if(arr[M]>arr[M+1]){//砍左边
            L=M+1;
        }else{
            return M;
        }
        M=L+((R-L)>>1);
    }
    return -1;
}

测试代码:

  • 数组不需要严格有序
  • 数组中不能有重复元素——赋值时做一个do while循环
//for test
public static boolean isRight(int[] arr,int index){
    if(arr.length<=1){
        return true;
    }
    if(index==0){
        return arr.length==1||arr[0]<arr[1];
    }
    if(index==arr.length-1){
        return arr[index]<arr[index-1];
    }
    return arr[index] < arr[index - 1] && arr[index] < arr[index + 1];
}
//for test
public static int[] generateRandomArray(int maxSize,int maxValue){
    int[] arr=new int[(int) ((maxSize+1)*Math.random())+1];
    arr[0]= (int) ((maxValue+1)*Math.random())-(int) ((maxValue+1)*Math.random());
    for (int i = 1; i < arr.length; i++) {
        do {
            arr[i]= (int) ((maxValue+1)*Math.random())-(int) ((maxValue+1)*Math.random());
        }while(arr[i]==arr[i-1]);
    }
    return arr;
}

//for test
public static void printArray(int[] arr){
    for (int cur:arr) {
        System.out.print(cur+" ");
    }
    System.out.println();
}
//for test
public static void main(String[] args) {
    int testTime=1000;
    int maxSize=10;
    int maxValue=100;
    boolean succeed=true;
    for (int i = 0; i < testTime; i++) {
        int[] arr=generateRandomArray(maxSize,maxValue);

        int index=getLessIndex(arr);
        if(!isRight(arr,index)){
            printArray(arr);
            System.out.println("getLessIndex:"+index);
            System.out.println("Oops!Error!");
            succeed=false;
            break;
        }
    }
    if(succeed==true){
        System.out.println("succeed!");
    }
}

测试结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HLlEoZ5m-1685076234670)(F:\typora插图\image-20230526123206885.png)]

二分法总结

算法描述:不断对闭区间(其实有时候处理的是半开半闭区间、开区间)一分为二的方法。

基本思想:一分为二

使用场景:

  • 有序数组查找指定元素/下标
  • 无序数组(满足左右淘汰逻辑)查找指定元素/下标

例题总结:

  • 有序数组查找指定元素:数组必须预处理保证有序,三分支均为arr[M]与num比较,调整放到分支外
  • 有序数组查找>=num最左边的位置:即查找数组中大于等于num的最小值的下标。其中一和arr[M]>num分支合并,不断更新,更新方向R=M-1
  • 有序数组查找<=num最右边的位置:即查找数组中小于等于num的最大值的下标。其中一和arr[M]<num分支合并,不断更新,更新方向L=M+1
  • 局部最小值:空数组、长度为1的数组、两端判断、中间判断,一共四部分逻辑处理,缩小范围的调整结合趋势图分析,实在不行再看运行结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值