算法|4.归并排序及应用

本文介绍了归并排序的递归和非递归实现,包括预处理、核心代码和优化点。同时,通过小和问题、逆序对个数和大于其2倍右侧数的个数三个应用实例,展示了归并排序在解决这些问题上的效率和方法。文章还讨论了算法的时间复杂度和空间复杂度,并给出了改写方法和例题总结。
摘要由CSDN通过智能技术生成

算法|4.归并排序及应用

1.归并排序算法

题意:归并排序的递归和非递归实现

解题思路:

​ 递归实现:

  • 预处理:数组为空或者长度小于2的直接返回
  • 调用子过程
  • 子过程终止条件L==R
  • 分解成[L,mid],[mid+1,R] ,子数组有序,合并子问题的解,全数组有序
  • 合并使用的是双指针法,最终需要将辅助数组的值再还给原数组。

​ 非递归实现:

  • 注意:**当N非常接近整数最大值时,*必须加那一句if(mergeSize>N/2){ break;}不然2之后可能滚成一个负数,但是加了只是保证循环能够停止,结果可能最后一部分右组没有归并完成,但是不加很可能死循环。
  • 主要解决的就是拆分过程:两种办法①模拟栈Stack②自底向上有序
  • 这里主要使用第二种,模拟栈的话需要压入的参数就是左右的坐标,可以封装一个成类,针对对象操作,暂无需要,略。
  • 还是先预处理:处理特殊情况
  • 这里引入了步长的概念,多少步长为1组,然后组内有序(直接拷贝到原数组,不再需要辅助数组)
  • 之后不断扩大步长,然后使用merge合并,直至全数组有序

优化的点:

  • 这里主要是非递归实现的版本
  • 这里合并使用的是左组和右组——我们每次需要指定左组下标和右组下标
  • 控制左指针的边界条件:L<N
  • 控制中间指针边界条件(左组存在):mergeSize+L-1,M<N(不满足就是左组不够或者右组没了,不满足直接不做合并)
  • 控制右指针的边界条件(右组存在):R=M+mergeSize-1,右组只要有够不够都需要做合并,只不过R的值需要重新赋值判断一下去边界值和当前计算的最小值
  • 每次重置步长之后,L的起始位置都是0

核心代码:

​ 递归实现:

//递归实现
public static void mergeSort1(int[] arr){
    if(arr==null||arr.length<2){
        return ;
    }
    process(arr,0,arr.length-1);
}

private static void process(int[] arr, int L, int R) {
    if(L==R){
        return ;
    }
    int mid=L+((R-L)>>1);
    process(arr,L,mid);
    process(arr,mid+1,R);
    merge(arr,L,mid,R);
}

private static void merge(int[] arr, int L, int M, int R) {
    int[] help=new int[R-L+1];
    int index=0;
    int p1=L;
    int p2=M+1;
    while(p1<=M&&p2<=R){
        help[index++]=arr[p1]<=arr[p2]?arr[p1++]:arr[p2++];
    }
    while(p1<=M){
        help[index++]=arr[p1++];
    }
    while(p2<=R){
        help[index++]=arr[p2++];
    }
    for (int i = 0; i < help.length; i++) {
        arr[L+i]=help[i];
    }
}

​ 非递归实现:

//非递归实现
public static void mergeSort2(int[] arr){
    if(arr==null||arr.length<2){
        return ;
    }
    int N=arr.length;
    int mergeSize=1;
    while(mergeSize<N){
        int L=0;
        while(L<N){
            int M=L+mergeSize-1;
            //左组不够了或者根本左组够了,但是右组没有
            if(M>=N){
                break;
            }
            int R=Math.min(M+mergeSize-1,N-1);
            merge(arr,L,M,R);
            L=R+1;
        }
        if(mergeSize>N/2){
           break;
        }
        mergeSize<<=1;
    }
}

测试代码:

// for test
public static int[] generateRandomArray(int maxSize, int maxValue) {
    int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
    for (int i = 0; i < arr.length; i++) {
        arr[i] = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random());
    }
    return arr;
}

// for test
public static int[] copyArray(int[] arr) {
    if (arr == null) {
        return null;
    }
    int[] res = new int[arr.length];
    for (int i = 0; i < arr.length; i++) {
        res[i] = arr[i];
    }
    return res;
}

// for test
public static boolean isEqual(int[] arr1, int[] arr2) {
    if ((arr1 == null && arr2 != null) || (arr1 != null && arr2 == null)) {
        return false;
    }
    if (arr1 == null && arr2 == null) {
        return true;
    }
    if (arr1.length != arr2.length) {
        return false;
    }
    for (int i = 0; i < arr1.length; i++) {
        if (arr1[i] != arr2[i]) {
            return false;
        }
    }
    return true;
}

// for test
public static void printArray(int[] arr) {
    if (arr == null) {
        return;
    }
    for (int i = 0; i < arr.length; i++) {
        System.out.print(arr[i] + " ");
    }
    System.out.println();
}

// for test
public static void main(String[] args) {
    int testTime = 500000;
    int maxSize = 10;
    int maxValue = 100;
    System.out.println("测试开始");
    for (int i = 0; i < testTime; i++) {
        int[] arr1 = generateRandomArray(maxSize, maxValue);
        int[] arr2 = copyArray(arr1);
        mergeSort1(arr1);
        mergeSort2(arr2);
        if (!isEqual(arr1, arr2)) {
            System.out.println("Oops!Error!");
            printArray(arr1);
            printArray(arr2);
            break;
        }
    }
    System.out.println("测试结束");
}

测试结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-z5wiiOeG-1685098557569)(F:\typora插图\image-20230526174128752.png)]

2.小和问题

题意:在一个数组中,一个数左边比它小的数的总和,叫该数的小和,数组中所有数的小和累加起来,叫数组小和。给定一个数组arr,求数组小和。

暴力方法:O(N^2)
归并排序应用:O(NlogN)

解题思路:

  • 注意:ans+=arr[p1]<arr[p2]?(R-p2+1)*arr[p1]:0;在复制之前求
  • 合并过程中计算小和
  • 小和产生规则:左组拷贝产生小和,右组拷贝不产生小和,相等先拷贝右组:小和是左边比当前数小的总和。要的是原数组中的小和。
  • 总体来说,是一个规则的转换:左边有多少数比当前数小转变成右边有多少数比当前数要大。
  • 指针不回退技巧:单调的,已经排好序了

对数器:

  • 穷举遍历

核心代码:

public static int smallSum(int[] arr){
    if(arr==null||arr.length<2){
        return 0;
    }
    return process(arr,0,arr.length-1);
}

private static int process(int[] arr, int L, int R) {
    if(L==R){
        return 0;
    }
    int mid=L+((R-L)>>1);
    return process(arr,L,mid)+
            process(arr,mid+1,R)+
                merge(arr,L,mid,R);
}

private static int merge(int[] arr, int L, int M, int R) {
    int ans=0;
    int[] help=new int[R-L+1];
    int index=0;
    int p1=L;
    int p2=M+1;
    while(p1<=M&&p2<=R){
        ans+=arr[p1]<arr[p2]?(R-p2+1)*arr[p1]:0;
        help[index++]=arr[p1]<arr[p2]?arr[p1++]:arr[p2++];
    }
    while(p1<=M){
        help[index++]=arr[p1++];
    }
    while(p2<=R){
        help[index++]=arr[p2++];
    }
    for (int i = 0; i < help.length; i++) {
        arr[L+i]=help[i];
    }
    return ans;
}

测试代码:

// for test
public static int test(int[] arr) {
    if (arr == null || arr.length < 2) {
        return 0;
    }
    int res = 0;
    for (int i = 1; i < arr.length; i++) {
        for (int j = 0; j < i; j++) {
            res += arr[j] < arr[i] ? arr[j] : 0;
        }
    }
    return res;
}

非特殊情况,不再放生成随机数组代码,只放对数器代码。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-87ikTikr-1685098557570)(F:\typora插图\image-20230526175839813.png)]

3.逆序对个数

题意:在一个数组中,任何一个前面的数a,和任何一个后面的数b,如果(a,b)是降序的,就称为降序对。给定一个数组arr,求数组的降序对总数量。

暴力方法:O(N^2)
归并排序应用:O(NlogN)

解题思路:

  • 注意:ans+=arr[p1]>arr[p2]?(p2-M):0;help[index--]=arr[p1]<=arr[p2]?arr[p2--]:arr[p1--];下边拷贝规则相等先右边,上边的顾好!!!!!结合例子反复验算谨慎!!!!!不要再反复改了!醉了…
  • 转换指标:从左向右,当左边比右边大的个数,转换成从右向左,右边比当前左数小的个数
  • 计数规则:左边产生,右边不产生,相等的先拷贝左边的
  • 对应的,归并的顺序改变一下

核心代码:

public static int reversePairNumber(int[] arr){
    if(arr==null||arr.length<2){
        return 0;
    }
    return process(arr,0,arr.length-1);
}

private static int process(int[] arr, int L, int R) {
    if(L==R){
        return 0;
    }
    int mid=L+((R-L)>>1);
    return process(arr,L,mid)+
            process(arr,mid+1,R)+
            merge(arr,L,mid,R);
}

private static int merge(int[] arr, int L, int M, int R) {
    int ans=0;
    int[] help=new int[R-L+1];
    int index=help.length-1;
    int p1=M;
    int p2=R;
    while(p1>=L&&p2>=M+1){
        ans+=arr[p1]>arr[p2]?(p2-M):0;
        help[index--]=arr[p1]<=arr[p2]?arr[p2--]:arr[p1--];
    }
    while(p1>=L){
        help[index--]=arr[p1--];
    }
    while(p2>=M+1){
        help[index--]=arr[p2--];
    }
    for (int i = 0; i < help.length; i++) {
        arr[L+i]=help[i];
    }
    return ans;
}

测试代码:

// for test
public static int test(int[] arr) {
    int ans = 0;
    for (int i = 0; i < arr.length; i++) {
        for (int j = i + 1; j < arr.length; j++) {
            if (arr[i] > arr[j]) {
                ans++;
            }
        }
    }
    return ans;
}

测试结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YrJznnb5-1685098557571)(F:\typora插图\image-20230526181737428.png)]

4.大于其2倍右侧数的个数

题意:在一个数组中,对于任何一个数num,求有多少个(后面的数*2)依然<num,返回总个数

暴力方法:O(N^2)
归并排序方法:O(NlogN)

解题思路:

  • 这部分判断逻辑需要单独判断,否则会污染数据或者越界,不容易处理。
  • 本质上来说,归并排序从左向右从右向左均可

核心代码:

public static int reversePairs(int[] arr){
    if(arr==null||arr.length<2){
        return 0;
    }
    return process(arr,0,arr.length-1);
}

private static int process(int[] arr, int L, int R) {
    if(L==R){
        return 0;
    }
    int mid=L+((R-L)>>1);
    return process(arr,L,mid)+
            process(arr,mid+1,R)+
            merge(arr,L,mid,R);
}

private static int merge(int[] arr, int L, int M, int R) {
    int ans=0;
    //[L,M],[M+1,R]
    //符合要求的是[M+1,p)
    int p=M+1;
    //遍历左组
    for (int i = L; i <= M; i++) {
        while(p<=R&&(long)arr[i]>(long)arr[p]*2){
            p++;
        }
        ans+=p-M-1;
    }
    int[] help=new int[R-L+1];
    int index=help.length-1;
    int p1=M;
    int p2=R;
    while(p1>=L&&p2>=M+1){
        help[index--]=arr[p1]<=arr[p2]?arr[p2--]:arr[p1--];
    }
    while(p1>=L){
        help[index--]=arr[p1--];
    }
    while(p2>=M+1){
        help[index--]=arr[p2--];
    }
    for (int i = 0; i < help.length; i++) {
        arr[L+i]=help[i];
    }
    return ans;
}

测试代码:

public static int test(int[] arr) {
    int ans = 0;
    for (int i = 0; i < arr.length; i++) {
        for (int j = i + 1; j < arr.length; j++) {
            if (arr[i] > (arr[j] << 1)) {
                ans++;
            }
        }
    }
    return ans;
}

测试结果:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qxsM0lci-1685098557571)(F:\typora插图\image-20230526184057230.png)]

归并算法总结

算法描述:

基于分治法的一种排序算法,将全序列拆分成子序列,使子序列有序后,再进行合并得到全有序的序列。

复杂度分析及算法评价:

  • 时间复杂度:O(nlogn)
  • 空间复杂度:O(logn)
  • 稳定的算法

改写方法:

  • 抓住指针不回退,单调的即技巧
  • 流程像——顺序决策,与大小有关

例题总结:

  • 归并排序递归实现:
  • 归并排序非递归实现:判断左组存在,判断右组存在,滚成整数最大值,循环停不下来
  • 小和问题:原则——右组拷贝不产生小和,左组拷贝产生小和,相等时先拷贝右组。先计算再拷贝
  • 逆序数对问题:从右向左拷贝;拷贝原则只与左右方向有关,等号斟酌,计算永远在拷贝之前。
  • 左大右的2倍问题:左右无关;可能有数组下标越界风险,单独处理;复制之前的merge记得去掉ans
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值