
tensorflow
彭世瑜
记录我的工作学习笔记
展开
-
深度学习:Mac下Tensorflow安装及报错解决
深度学习tensorflow 使用: 图像识别 自然语言处理 情感分析 人工智能 - 机器学习 - 深度学习 机器学习: -神经网络(简单) -回归 深度学习: -神经网络(深度) -图像:卷积神经网络 -自然语言处理:循环神经网络 CPU/GPU/TPU 安装: CPU版本 pip install tensorflow ...原创 2019-02-24 22:18:04 · 2172 阅读 · 0 评论 -
深度学习:Tensorflow的基本概念和张量
计算密集型(cpu计算) -tensorflow IO密集型(web,磁盘) -django -scrapy 1、基本概念 tensor 张量-数据结构 op 专门运算的操作节点 graph 图:整个程序的结构 session 会话:运算程序的图 图默认已经注册: 一组表示tf.Operation计算单位的对象 和 tf.Tensor表示操作之间流动的数据单位的对象 获取...原创 2019-02-24 22:56:00 · 1247 阅读 · 0 评论 -
深度学习:Tensorflow变量op和可视化TensorBoard
变量op 变量也是一种op,是一种特殊的张量 能够进行存储持久化,它的值就是张量,默认被训练 变量op特点: 1、变量op能够持久化保存,普通张量op是不行的 2、当定义一个变量op的时候,一定要在会话中去运行初始化 3、name参数,在tensorboard显示名字,区分相同op 变量的创建 tf.Variable(initial_value=NOne, name=None, trainable...原创 2019-03-01 22:47:43 · 1836 阅读 · 0 评论 -
深度学习:Tensorflow实现线性回归梯度下降优化
回顾 1、算法:线性回归 y=kx+by = kx + by=kx+b 2、策略:均方误差 3、优化:梯度下降 步骤 1、准备好特征值和目标值 2、建立模型,随机初始化准备权重w和偏置b y_predict=xw+by\_predict = xw + by_predict=xw+b 3、求损失函数,误差,均方误差 mse=(y1−y1−)2+(y2−y2−))2nmse = \frac{(y1-y...原创 2019-03-03 23:44:50 · 1321 阅读 · 0 评论