mousever的专栏

乘风破浪欲前行

几种数据可视化框架分析

根据下面各个框架本身的特性,以及各自的优缺点,推荐使用D3或者ECharts作为数据可视化的首选框架,某些小特性可以辅用其他小框架实现。具体每个框架的说明和分析如下: D3.js D3是指数据驱动文档(Data-Driven Documents)。D3.js是一个JavaScript库,它...

2017-02-14 10:32:53

阅读数 1084

评论数 0

推荐系统中协同过滤算法实现分析(重要两个图!!)

 最近研究Mahout比较多,特别是里面协同过滤算法;于是把协同过滤算法的这个实现思路与数据流程,总结了一下,以便以后对系统做优化时,有个清晰的思路,这样才能知道该如何优化且优化后数据亦能正确。      推荐中的协同过滤算法简单说明下:      首先,通过分析用户的偏好行为,来挖掘出...

2016-09-12 22:25:48

阅读数 4715

评论数 0

协同过滤中item-based与user-based选择依据

 此文总结的不错。 协同过滤是大家熟知的推荐算法。 总的来说协同过滤又可以分为以下两大类: Neighborhood-based:计算相似item 或user后进行推荐Model-based: 直接训练模型预测Rating 在Neighborhoold-based算法中,又细分为u...

2016-09-12 22:22:23

阅读数 652

评论数 0

数据挖掘之lsh minhash simhash

在项目中碰到这样的问题: 互联网用户每天会访问很多的网页,假设两个用户访问过相同的网页,说明两个用户相似,相同的网页越多,用户相似度越高,这就是典型的CF中的user-based推荐算法。 算法的原理很简单,只要两两计算用户的相似性,针对每个用户,获取最相似的K个用户即可。 但是在实际的工程...

2016-09-09 22:39:50

阅读数 620

评论数 0

ChiMerge 算法: 以鸢尾花数据集为例

ChiMerge 是监督的、自底向上的(即基于合并的)数据离散化方法。它依赖于卡方分析:具有最小卡方值的相邻区间合并在一起,直到满足确定的停止准则。 基本思想:对于精确的离散化,相对类频率在一个区间内应当完全一致。因此,如果两个相邻的区间具有非常类似的类分布,则这两个区间可以合并;否则,它们应当...

2016-09-03 19:47:44

阅读数 2419

评论数 0

十大算法展辉煌历史,十大问题引锦绣前程

上篇博文(趣味数据挖之十)末尾许下一愿–介绍数据挖掘十大算法。在博友们友好的催促之下,现在才姗姗来迟,歉疚有加。凡人写博是十分个性化的业余活动(非平凡人物可能会雇佣团队写博);在科技的春种秋收季节,人们总会遇到若干突然冒出来的任务,而在次要活动中,最先停下来为正事让时间的,就是读博写博。 言归正...

2016-08-31 13:33:32

阅读数 570

评论数 0

最大似然概率和后验概率的区别

极大似然估计和贝叶斯估计分别代表了频率派和贝叶斯派的观点。频率派认为,参数是客观存在的,只是未知而矣。因此,频率派最关心极大似然函数,只要参数求出来了,给定自变量X,Y也就固定了,极大似然估计如下所示: D表示训练数据集,是模型参数 相反的,贝叶斯派认为参数也是随机的,和一般随机变量没有本质...

2016-08-29 18:06:46

阅读数 6059

评论数 0

深度学习座下的四大神兽:计算能力、算法、数据、场景

如今越来越多的人愿意和自己的虚拟私人助理交谈,只需要动动嘴就可以让Siri/Alexa/Rokid帮你完成发微信、订车票、设闹钟这样的闲事,还能提醒你吃药、开会,这样一个不需要付工资的贴心小棉袄怎么会不受喜爱呢?虚拟助理正在一步步接近现实中的私人助理,而背后支持它的正是深度学习的技术除了虚拟助理之...

2016-08-29 17:39:47

阅读数 3175

评论数 0

机器学习算法优缺点及其应用领域

 决策树 一、  决策树优点 1、决策树易于理解和解释,可以可视化分析,容易提取出规则。 2、可以同时处理标称型和数值型数据。 3、测试数据集时,运行速度比较快。 4、决策树可以很好的扩展到大型数据库中,同时它的大小独立于数据库大小。 二、决策树缺点 1、对缺失数据处理比较困难...

2016-08-23 19:54:41

阅读数 3563

评论数 0

让人又爱又恨的信用评级

墨西哥湾漏油事故,让石油巨人BP甚至陷入了破产的传言,最直接的表现就是,6月3日,几大国际信用评级机构纷纷下调对其信用评级。这预示着这家公司在金融市场上面临的风险正在增加,而保障这家公司债务违约的成本也大幅上升。在早前的金融危机和欧洲债务危机中,信用评级一词就被频频提及。那么,究竟什么是信用评级,...

2016-08-16 13:53:09

阅读数 679

评论数 0

论信贷企业信用评级与债券信用评级的关系

一、信贷企业信用评级与债券信用评级的概念及作用 信用评级,也称为资信评级,是由独立的信用评级机构对影响评级对象的诸多信用风险因素进行分析研究,就其偿还债务的能力及其偿债意愿进行综合评价,并且用简单明了的符号表示出来。 根据评级对象的不同,信用评级又分主体信用评级和债券信用评级两种。主体信用评级是以...

2016-08-16 09:29:12

阅读数 2384

评论数 0

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

 版权声明:     本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言:     上一次写了关于PCA与LDA的文章,PCA的...

2016-08-07 21:03:27

阅读数 1160

评论数 4

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构区别

神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosenblatt。(扯一个不相关的:由于计算技术的落后,当时感知器传输函数是用线拉动变阻器改变电阻的方法...

2016-08-07 18:09:01

阅读数 872

评论数 3

如何防范与化解联保联贷风险

众多研究认为,“联保联贷”模式改变了传统商业银行信贷机制,能缓解信息不对称问题,其诞生的初衷主要是为解决中小企业担保不足、信息不对称的问题,但如果这种企业间的联保联贷纯粹为了得到银行贷款,则在经济增速放缓、内外部需求趋弱从而导致企业经营困难、盈利能力下降的情况下,容易引发因单一企业资金链断裂影响到...

2016-07-29 15:54:04

阅读数 596

评论数 0

adaboost原理(包含权重详细解释)

1.1 Adaboost是什么 AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。它的自适应在于:前一个基本分类器分错的样本会得到加强,加权后的全体样本再次被用来训练...

2016-07-26 17:59:43

阅读数 28598

评论数 7

大数据环境下,征信,真的那么美好吗?

     不知从什么时候开始,征信仿佛一夜之间成了一个很热门的业务。也曾经看过很多文章,都描绘着征信未来广泛的应用,和庞大的市场份额。其间,虽然偶尔也有人出来泼冷水,但显然很快就被更为狂热的后进者所淹没。 众多代表着传统金融和互联网金融的大腕们纷纷摩拳擦掌,下场厮杀。BAT中除...

2016-07-10 16:21:14

阅读数 440

评论数 0

Deep Learning(深度学习)学习笔记整理系列

 目录: 一、概述 二、背景 三、人脑视觉机理 四、关于特征        4.1、特征表示的粒度        4.2、初级(浅层)特征表示        4.3、结构性特征表示        4.4、需要有多少个特征? 五、Deep Le...

2016-07-05 20:53:21

阅读数 992

评论数 0

银行对公风险分析

 银行对公业务风险分析 标签   银行对公业务包括企业电子银行、单位存款业务、信贷业务、机构业务、国际业务、委托性住房金融、资金清算、中间业务、资产推介、基金托管等等,通俗点说就是“对单位的业务”。让我们一起了解下银行对公业务有哪些风险吧。   一、银行对公业务总体风险因素分析 ...

2016-07-04 21:52:18

阅读数 439

评论数 0

R语言主成分和因子分析篇

主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分。 探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法,通过寻找一组更小 的、潜在的或隐藏的结构来解释已观测到的、变量间的关系。 1.R中的主成分和因子分析R的基础安装包中提供...

2016-05-29 22:58:39

阅读数 3844

评论数 0

R语言预处理之异常值问题

 >>>> 一、问题 什么是异常值?如何检测异常值?请伙伴们思考或者留言讨论。 >>>> 二、解决方法 1. 单变量异常值检测 2. 使用局部异常因子进行异常值检测 3. 通过聚类的方法...

2016-05-29 22:45:18

阅读数 2047

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭