题意:求解从起点到终点的所有路径中,最长边最小是多少?
思路:dijkstra算法变形,用d[i]表示某条路径中的最长边即可。
AC代码:
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
#define inf 0x7ffffff
double edge[205][205];
double x[205],y[205],d[205],v[205];
int n;
double dijkstra()
{
for(int i=0;i<n;i++)
d[i]=(i==0?0:inf);
memset(v,0,sizeof(v));
for(int i=0;i<n;i++)
{
double minn=inf;
int p;
for(int j=0;j<n;j++)
{
if(!v[j]&&d[j]<minn)
{
minn=d[j];
p=j;
}
}
v[p]=1;
for(int j=0;j<n;j++)
{
if(!v[j])
d[j]=min(d[j],max(edge[p][j],d[p])); // !!!
// cout<<d[j]<<endl;
}
}
return d[1];
}
int main()
{
int k=1;
while(scanf("%d",&n)!=EOF&&n)
{
for(int i=0;i<n;i++)
scanf("%lf%lf",&x[i],&y[i]);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
edge[i][j]=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
//cout<<edge[i][j]<<endl;
}
double ans = dijkstra();
printf("Scenario #%d\nFrog Distance = %.3lf\n\n",k++,ans);
}
return 0;
}