深度学习图像超分辨率最新综述:从模型到应用

本文综述了基于深度学习的图像超分辨率(SR)技术,涵盖模型框架、上采样方法、网络设计和性能度量,讨论了监督和非监督方法,以及SR在实际应用中的价值。通过对比传统方法和深度学习方法的效果,强调了深度SR在图像放大和压缩方面的优势。文章还提供了近年来200多篇相关文献的总结,适合入门和深入研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击我爱计算机视觉标星,更快获取CVML新技术


今日arXiv新上论文《Deep Learning for Image Super-resolution:A Survey》,详细回顾了近年来基于深度学习的图像超分辨率(Super-resolution,SR)的方方面面,对于想要进入该领域、在该领域进一步研究、涉足该领域研发的朋友,堪称必读论文。

该文作者分别来自华南理工大学和新加坡管理大学。/撒花

何为图像超分辨?

通俗点说,就是把图像由小变大,分辨率从低到高。

但这里面却有大学问!

放大后不可避免涉及到图像中更多细节要被用户看到,搞不好会让人看着很难受。

从上面的图可以看到使用最近邻方法插值直接放大的图像和使用超分辨率算法生成的大图的比较。明眼人一眼就能知道后者让人更舒服!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值