CVPR 2025 NTIRE赛事 | 首届多场景雨滴去除挑战赛

关注公众号,发现CV技术之美

CVPR NTIRE (New Trends in Image Restoration and Enhancement) Workshop是计算机视觉领域极具影响力的国际学术研讨会,涵盖增强、修复、质量评价等底层视觉比赛内容。为促进图像恢复领域尤其是雨滴去除方向的发展,中国科学技术大学智能媒体计算实验室、新加坡国立大学、宁波东方理工大学联合多家机构的视觉领域专家学者,在第十届CVPR NTIRE 2025研讨会上举办了首届多场景雨滴去除挑战赛。


大赛背景

雨滴附着在镜头或玻璃表面会显著降低图像的可见性。现有的雨滴去除数据集存在两个主要局限性。首先,这些数据集大多聚焦于背景,导致雨滴模糊不清,忽视了以雨滴为焦点的场景。其次,现有数据集主要覆盖白天场景,对夜间雨滴场景覆盖不足。因此,如何有效提升算法在不同聚焦和光照条件下的雨滴去除效果,构成雨滴去除技术发展的重要挑战。

为此,我们发布了大规模真实场景下的Raindrop Clarity雨滴清晰数据集,涵盖了以雨滴为焦点的图像以及夜间场景,弥补了现有数据集的局限性。基于此数据集,我们联合第10届CVPR NTIRE Workshop举办首届昼夜双聚焦雨滴去除竞赛,旨在促进图像恢复领域,特别是雨滴去除技术的发展。


大赛介绍

本次比赛采用名为Raindrop Clarity雨滴清晰数据集 (由金晔莹研究员等人提供)。该数据集包含 15,186 组高质量图像,包括成对数据(雨滴图像与清晰背景图像)和三元组数据(雨滴图像、模糊背景图像与清晰背景图像)。

具体包括:白天雨滴图像:雨滴聚焦图像,背景聚焦图像。夜间雨滴图像:雨滴聚焦图像,背景聚焦图像。竞赛的最终排名将基于 PSNR、SSIM 和 LPIPS 等客观评价指标,请使用同一模型推理所有图像,不区分白天和夜晚,不区分雨滴聚焦和背景聚焦,确保全面、公正的算法评估。

Raindrop Clarity雨滴清晰数据集的示例: 左边背景聚焦, 由(a)雨滴图像与(b)清晰背景图像组成; 右边雨滴聚焦, 由(a)雨滴图像、(b)模糊背景图像与(c)清晰背景图像构成。

在模型开发阶段,训练集和验证集被提供,参赛者可借助训练集训练模型,并通过官方提供的提交示例,在CodaLab服务器注册提交进行评估。在测试阶段,竞赛组织方将会公布测试集,最终比赛成绩由比赛组织方以测试集上性能结果进行排名。


大赛官网

  • 比赛网址:https://codalab.lisn.upsaclay.fr/competitions/21345

  • 竞赛主页:https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io

  • 数据集地址:https://github.com/jinyeying/RaindropClarity

  • 论文链接:https://arxiv.org/abs/2407.16957

  • CVPR NTIRE 2025官网:https://cvlai.net/ntire/2025/>


大赛须知

本次学术竞赛面向全社会开放,个人、高等院校、科研单位、企业等人员均可报名参加,每位参赛者在测试提交阶段只允许参加一个队伍,每个队伍人数最多不超过10人。同时每个队伍只允许提交一个比赛结果进行最终排名,请在提交比赛结果和最终方案说明(即Fact sheets)时确定最终方案和队伍名。为保证比赛的公平性,如使用额外数据集,请在最终方案中说明。

每个团队是否提交Workshop论文是自由选择的,不作为评奖条件。会议组织方将邀请成绩靠前的队伍提交CVPR2025 Workshop论文,供同行审稿。参与测试阶段提交的团队,尤其是排名靠前和方案新颖的团队将有机会被邀请共同参与挑战报告的撰写。上述论文录用后将发表于CVPR2025 Workshop论文集中。

会议组织方将为获胜团队将提供比赛奖金(或礼物)和证书,最终解释权归主办方所有,比赛奖励暂定为:

  • 第一名:1000美元(或同等价值礼物)+ 证书

  • 第二名:600美元(或同等价值礼物)+ 证书

  • 第三名:400美元(或同等价值礼物)+ 证书


大赛组织方

本次比赛由中国科学技术大学智能媒体计算实验室、新加坡国立大学、宁波东方理工大学(暂名)等机构联合举办 (以下组织者排名不分先后,数据集由金晔莹研究员提供)。详细信息可见网址:https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io

  • Xin Li, USTC

  • Yeying Jin, NUS|Tencent

  • Xin Jin, EIT, Ningbo

  • Zongwei Wu, University of Wurzburg

  • Bingchen Li, NUS

  • Yufei Wang, Snap Research

➤领域专家联合组织者:

  • Radu Timofte, University of Wurzburg

  • Zhibo Chen, USTC

  • Wenhan Yang, Pengcheng Laboratory

  • Yu Li, IDEA

  • Bihan Wen, NTU

  • Robby T. Tan, NUS

如有参赛疑问,请优先联系以下组织者李鑫(xin.li@ustc.edu.cn)、金晔莹(jinyeying@u.nus.edu)、金鑫(jinxin@eitech.edu.cn)、吴宗蔚(zongwei.wu@uni-wuerzburg.de).


大赛安排

  • 2025.01.18 发布训练集

    • 4,713组白天雨滴输入和清晰背景 (4143组白天背景聚焦, 4512组白天雨滴聚焦)

    • 8,655组夜晚雨滴输入和清晰背景 (1575组夜晚背景聚焦, 3138组夜晚雨滴聚焦)

  • 2025.02.01 发布验证集

    • 240张雨滴输入, 其中120张白天雨滴 (60张白天背景聚焦, 60张白天雨滴聚焦), 120张夜晚雨滴(60张夜晚背景聚焦, 60张夜晚雨滴聚焦)

  • 2025.02.01 发布在线验证平台

  • 2025.03.15 发布测试集,关闭验证平台

  • 2025.03.21 测试结果提交截止日期

  • 2025.03.22 概况介绍和代码/可执行文件提交截止日期

  • 2025.03.24 向参与者发布初步测试结果

  • 2025.04.05 挑战参赛作品的论文提交截止日期

  • 2025.06.? NTIRE研讨会和挑战、成果和颁奖典礼(CVPR2025, Nashville, USA)


大赛交流群

下面是大赛官方微信群:如遇问题(如链接过期),请备注姓名和单位,联系邮箱jinyeying@u.nus.edu或微信号RaindropClarity处理。

A qr code with a couple of imagesAI-generated content may be incorrect.

A qr code on a blue backgroundAI-generated content may be incorrect.

附:比赛Raindrop Clarity数据集

  • 数据集地址:https://github.com/jinyeying/RaindropClarity

图一:现有数据集的两大缺点

Graphical user interface, applicationAI-generated content may be incorrect.
Graphical user interface, applicationAI-generated content may be incorrect.
Graphical user interface, websiteAI-generated content may be incorrect.
Graphical user interface, websiteAI-generated content may be incorrect.

图二:Raindrop Clarity数据集的动机和贡献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值