朴素贝叶斯分类应用的python实现:用户满意度预测

本文详细讲解了如何使用朴素贝叶斯方法对汽车评价数据进行用户满意度预测,涉及数据加载、模型构建及UCI数据集的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先简单介绍一下原理:

以下为用朴素贝叶斯分类预测用户满意度的python实现:

import pandas as pd


def data_to_df(data_path, test_num=100):
    # 读取数据,并分割训练集和测试集
    df_data = pd.read_csv(data_path, names=['buying', 'maint', 'doors', 'persons', 'lug-boot', 'safety', 'label'])
    df_test = df_data.sample(n=test_num)
    df_train = df_data.drop(df_test.index)
    return df_train, df_test


class Bayesian_Classifier():
    """贝叶斯分类器"""
    def __init__(self, df):
        # prior_probability_dict:先验概率字典,记录各类别的先验概率,格式:{'unacc':概率值, 'acc': 概率值, 'good': 概率值, 'vgood': 概率值}
        self.prior_probability_series = df['label'].value_counts(normalize=True)
      
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值