#include<bits/stdc++.h>
using namespace std;
int id1,id2,num,n;
int g[1010][1010];
int linker[1010];
int used[1010];
int dfs(int x){
for(int i=0;i<n;i++){
if(g[x][i]&&!used[i]){
used[i]=1;
if(linker[i]==0||dfs(linker[i])){
linker[i]=x;
return 1;
}
}
}
return 0;
}
int hungary(){
int r=0;
memset(linker,0,sizeof linker);
for(int i=0;i<n;i++){
memset(used,0,sizeof used);
if(dfs(i)) r++;
}
return r;
}
int main()
{
int i,j;
while(scanf("%d",&n)!=EOF){
char c1,c2,c3,c4,c5;
memset(g,0,sizeof g);
for(i=0;i<n;i++){
scanf("%d%c%c%c%d%c%c",&id1,&c1,&c2,&c3,&num,&c4,&c5);
for(j=0;j<num;j++){
scanf("%d",&id2);
g[id1][id2]=1;
}
}
printf("%d\n",n-hungary()/2);//最大独立集=顶点数-最大匹配数,(id1,id2)和(id2,id1)相同,故/2
}
return 0;
}
hdu1068
最新推荐文章于 2024-04-22 14:46:51 发布
本文介绍了一种使用深度优先搜索实现的匈牙利算法,用于求解图中最大独立集问题,通过实例展示了如何在给定边的图中找到顶点的最大集合,使得任意两个顶点间不存在边。核心代码包括dfs和hungary函数,最后输出最大独立集大小。
摘要由CSDN通过智能技术生成