杨辉三角快速幂分治组合数

本文介绍了杨辉三角的性质,包括行和与组合数的关系,并探讨了快速幂算法在处理大整数乘法时避免溢出的问题。结合分治思想,阐述了非递归快速幂的实现原理,最后通过一个习题展示了如何运用这些方法解决组合数取模的计算问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

杨辉三角

这里写图片描述
常用性质:
(1)杨辉三角从第一行即n=0,开始有这样的性质每行所有数之和为2^n
(2)Cn1+Cn2+Cn3+..+Cnn=(2^n)-1; n=3时
3+3+1=2^3-1,刚好是第四行n=3的时候

快速幂

承接2^n,一般算法中n会很大,2^n很容易溢出,这时候题目会要求对运算结果取模。

//时间复杂度O(n)
const int module=1000000007;
int result=1;
for(int i=1;i<=n;i++){
            if(result>module)result%=module;
            result*=2;
        }

以上代码在n=10^9时或更大时会出现运行慢的问题,为解决这个问题,提出快速幂算法 ,有递归和非递归

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值