- 博客(5)
- 收藏
- 关注
原创 GILE-一种泛化的引入Label Embedding的文本分类方法
背景 当前文本分类的方法和框架有很多,但往往缺乏了对label本身的关注,所以分享一篇相关的论文,希望抛砖引玉。原文名称:《GILE: A Generalized Input-Label Embedding for Text Classification》。 目的 本文就是使用了一些新的连接input和label的方式,更好地去做文本分类,同时也能应用于unseen的样本中。 模型 1.先获取la...
2019-09-17 15:20:39 1740
原创 论文解读: Few-Shot Text Classification with Induction Network
目的 在文本分类中,经常碰到一些很少出现过的类别或这样不均衡的类别样本,而且当前的few-shot技术经常会将输入的query和support的样本集合进行sample-wise级别的对比。但是,如果跟同一个类别下的不同表达的样本去对比的时候产生的效果就不太好。 因此,文章的作者就提出了,通过学习sample所属于的类别的表示得到class-wise的向量,然后跟输入的query进行对比,这样能比...
2019-09-28 17:25:10 1703
原创 如何使用Tensorflow保存或者加载模型(三) -- Keras
1.背景 Keras是一个非常易于上手,好用的深度学习框架。不仅容易构建模型,而且容易保存模型。目前,Keras已经被纳入到Tensorflow框架中了,因此站长打算在介绍Tensorflow模型保存的时候,可以一并把Keras的模型训练和保存也介绍了。 1.1 模型构建 下面可以以一个简单的demo模型来作为说明,构建模型结构。 # -*- coding: utf-8 -*- # @Time ...
2019-08-22 09:45:52 612
原创 如何使用Tensorflow保存或者加载模型(二) -- ModelBuilder API
1.背景 在上一篇如何使用Tensorflow保存或者加载模型(一)文章中,站长介绍了怎么把Tensorflow模型的图和变量通过tf.train.Saver()保存在本地。在这一篇文章中,站长会介绍用一种新的模型保存和加载的方式,ModelBuilder API,在该方式下保存和加载模型会更加简单,而且支持Python和Java环境下运行,可以更好地满足工业界的需求。 1.1 模型文件介绍 Mo...
2019-08-20 13:30:04 329
原创 如何使用Tensorflow保存或者加载模型(一)
1.背景 在深度学习的开源框架中,Tensorflow是最热门的框架之一,相信很多同学已经有了不同程度的学习和了解。但站长在平时的沟通发现,很多同学反应不知道怎么使用自己训练好的模型进行预测,不知道怎么继续接着之前训练了多个轮次的模型进行训练,不知道怎么生成工业化场景里可上线的模型文件等等。 因此,站长会写一个针对Tensorflow的模型保存和加载的系列文章,为大家解决相关问题。 1.1 模型文...
2019-08-19 13:46:32 249
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人