大数据
文章平均质量分 86
王小工
java研发工程师、架构师、云计算、大数据、云原生
展开
-
Flink Kubernetes Operator
Flink Kubernetes Operator是一个用于在Kubernetes集群上管理Apache Flink应用的工具。原创 2024-10-17 16:21:37 · 1234 阅读 · 0 评论 -
大数据治理
大数据治理是指充分运用大数据、云计算、人工智能等先进技术,实现治理手段的智能化。它不仅仅是对大数据的管理,更是一种全面的数据战略,涵盖了数据的获取、处理、存储、安全等各个环节。原创 2024-10-14 18:26:31 · 477 阅读 · 0 评论 -
FLINK SQL 任务参数
在Flink SQL任务中,参数配置对于任务的性能和稳定性至关重要。原创 2024-10-14 16:49:00 · 1096 阅读 · 0 评论 -
FLINK SQL 元数据持久化扩展
JdbcCatalog是Flink SQL提供的一种External Catalog,它使得Flink能够直接查询和操作关系型数据库(如MySQL、PostgreSQL等)中的元数据。通过JdbcCatalog,Flink可以无缝地集成到现有的数据库环境中,利用数据库的元数据管理能力来优化数据处理流程。HiveCatalog是Flink提供的一种External Catalog,它基于Hive的元数据管理机制,使得Flink能够直接查询和操作Hive中的元数据。原创 2024-10-14 16:36:21 · 1150 阅读 · 0 评论 -
FLINK SQL UDF
在Flink SQL中,UDF(User-Defined Function,用户自定义函数)是一种扩展Flink SQL处理能力的机制。通过UDF,用户可以编写自定义的Java或Scala代码,以处理Flink SQL无法直接支持的数据处理逻辑。原创 2024-10-14 15:53:41 · 1128 阅读 · 0 评论 -
FLINK SQL语法(2)
Regular Joins,即常规连接,是Flink中最通用的连接类型。在这种连接下,连接两侧表的任何新记录或变更都是可见的,并会影响整个连接的结果。例如,如果左侧有一条新记录,在连接条件满足的情况下,它将和右侧表的之前和之后的所有记录进行连接。Interval Joins连接两个数据流(或表),并基于相同的关键字(Key)以及一个相对时间区间来进行匹配。这个时间区间由用户指定,包括一个下界(lowerBound)和一个上界(upperBound)。原创 2024-10-14 11:50:56 · 893 阅读 · 0 评论 -
FLINK SQL语法(1)
Flink SQL Connector是一种用于在Flink SQL与外部数据源或数据汇之间建立连接的插件。它允许Flink SQL从外部数据源读取数据,并将处理后的数据写入到外部数据汇中。通过Connector,Flink SQL能够轻松实现对各种类型数据的实时处理和分析。在某些特殊情况下,用户可能需要自定义Connector来满足特定的需求。Flink提供了丰富的API和工具来支持用户自定义Connector。自定义Connector通常涉及以下几个步骤:1.定义Connector的工厂类。原创 2024-10-14 10:36:17 · 1490 阅读 · 0 评论 -
FLINK SQL时区问题
接下来,需要定义数据源,并指定如何从数据中提取事件时间戳。这通常通过实现TimestampAssigner接口或使用Flink提供的便捷类来完成。// 数据源// 解析JSON并创建MyEvent对象// ...})@Override// 从MyEvent对象中提取时间戳});定义一个数据源,该数据源产生包含传感器值和到达时间戳的流数据。在Flink中,这通常通过实现SourceFunction接口或使用Flink提供的连接器(如Kafka连接器)来完成。原创 2024-10-12 13:38:08 · 1298 阅读 · 0 评论 -
FLINK SQL时间属性
在Flink SQL中,时间属性是一个核心概念,它主要用于处理与时间相关的数据流。Flink支持三种时间属性:事件时间(event time)、处理时间(processing time)和摄入时间(ingestion time)。原创 2024-10-12 11:38:46 · 1432 阅读 · 0 评论 -
FLINK SQL
简介运行环境集成UDF基类实现UDF执行逻辑函数注意UDF入参、出参类型推导明确UDF输出结果是否是定值巧妙运用运行时上下文。原创 2024-10-08 18:18:21 · 1553 阅读 · 1 评论 -
FLINK SQL动态表&连续查询
使用Flink支持的连接器(如Kafka、JDBC、HDFS等)来配置数据源。这些连接器允许Flink从外部系统读取数据,并将其转换为Flink内部的数据流。在Flink SQL中,使用CREATE TABLE语句来定义动态表。动态表是对数据流的一个连续视图,能够反映数据流的最新状态。原创 2024-10-11 09:25:25 · 1458 阅读 · 0 评论 -
FLINK SQL数据类型
Flink SQL也支持用户自定义数据类型,用户可以根据自己的需求定义复杂的数据结构,并通过实现相应的接口或类来注册这些自定义类型。1、定义与用途用户自定义数据类型通常用于处理那些无法直接通过Flink内置数据类型表示的数据。例如,当需要处理一个包含多个字段的复杂数据结构时,就可以定义一个包含这些字段的用户自定义数据类型。2、实现方式定义数据类型:首先,需要定义一个Java或Scala类来表示用户自定义数据类型。原创 2024-10-10 18:14:46 · 1367 阅读 · 1 评论 -
FLINK SQL&Table API 的基本概念及常用API
首先,需要定义数据源source_table和数据输出目标result_table。这里假设source_table是一个Kafka数据源,而result_table是一个文件系统上的CSV文件。-- 定义数据源) WITH (-- 定义输出目标) WITH (原创 2024-10-10 17:55:32 · 1353 阅读 · 0 评论 -
FLINK SQL&Table API 简介及运行环境
Flink本身是批流统一的处理框架,所以Flink SQL和Table API是批流统一的上层处理API。目前,这两套API仍处于活跃的开发阶段,功能尚未完全完善。原创 2024-10-09 13:58:08 · 1014 阅读 · 0 评论 -
Flink SQL 基础操作
使用CREATE TABLE语句定义输入数据源,包括其schema、存储格式(如CSV、JSON等)以及连接器的配置(如Kafka、FileSystem等)。示例:id STRING,age INT,) WITH (原创 2024-08-09 18:47:32 · 686 阅读 · 0 评论 -
Flink windows wsl安装ubuntu 运行flink
【代码】Flink windows wsl安装ubuntu 运行flink。原创 2024-08-09 08:39:21 · 1072 阅读 · 0 评论 -
Flink 1.20 最新版本 Windows本地运行
Apache Flink 1.20 是 Flink 的一个较新版本,它带来了许多改进和新功能,如物化表、统一的检查点文件合并机制等。然而,关于 Flink 1.20 在 Windows 本地运行的具体步骤,虽然 Flink 本身是跨平台的,但官方文档和社区资源可能更多地关注于 Linux 环境下的部署和配置。原创 2024-08-08 10:55:41 · 1734 阅读 · 0 评论 -
Flink Maven 依赖
定义:Apache Flink ML是Apache Flink的扩展库,提供了一套全面的机器学习(ML)API和基础设施,旨在简化机器学习管道的构建过程。开发者:Apache软件基金会编程语言:支持Python和Java,方便不同编程背景的开发者使用。原创 2024-08-05 18:58:25 · 1009 阅读 · 0 评论 -
flink 配置表
虽然 Flink 本身没有一个名为“配置表”的明确术语,但配置文件 flink-conf.yaml 和其他相关配置文件可以视为 Flink 的配置表,它们包含了 Flink 集群和作业运行所需的各种配置项。这些配置项涵盖了从主机和端口设置到内存管理、并行度调整、状态后端和检查点配置等多个方面。原创 2024-07-11 08:11:12 · 576 阅读 · 0 评论 -
flink 大数据处理资源分配
Flink是一个用于无界和有界数据流处理的分布式计算框架,它通过集群模式部署,可以充分利用集群中的CPU、内存、磁盘和网络IO等资源。Flink的资源分配主要涉及到任务管理器(TaskManager)和作业管理器(JobManager)的内存和CPU资源配置,以及作业的并行度设置。原创 2024-07-10 19:39:29 · 779 阅读 · 0 评论 -
Flink 窗口触发器(Trigger)(二)
用户可以通过实现 Trigger 接口来创建自定义触发器。自定义触发器可以基于复杂的逻辑来决定何时触发窗口的计算。onElement(element, timestamp, window, ctx): 当元素被添加到窗口时调用。(time, window, ctx, out): 当窗口的事件时间到达时调用。(time, window, ctx, out): 当窗口的处理时间到达时调用。onMerge(other): 当两个窗口合并时调用(例如,在会话窗口中使用)。canMerge。原创 2024-07-03 19:59:20 · 1662 阅读 · 1 评论 -
Flink 窗口触发器(Trigger)(一)
Flink的窗口触发器(Trigger)是流处理中一个非常关键的概念,它定义了窗口何时被触发并决定触发后的行为(如进行窗口数据的计算或清理)。原创 2024-07-03 19:26:13 · 1792 阅读 · 0 评论 -
Flink Window DEMO 学习
该文档演示了fink windows的操作DEMO。原创 2024-06-29 16:44:03 · 446 阅读 · 0 评论 -
Flink 反压
Flink反压是一个在实时计算应用中常见的问题,特别是在流式计算场景中。原创 2024-06-19 18:50:25 · 1441 阅读 · 0 评论 -
Flink 计数器Accumulator
通常,不需要直接定义 Accumulator 接口的实现,因为 Flink 已经为提供了一些内置的 Accumulator 类型,如 IntCounter, LongCounter, DoubleCounter 等。但如果需要自定义的聚合逻辑,可以实现 Accumulator 接口。原创 2024-06-18 20:00:58 · 662 阅读 · 0 评论 -
Flink Kafka获取数据写入到MongoDB中 样例
Apache Flink 是一个流处理和批处理的开源框架,它允许从各种数据源(如 Kafka)读取数据,处理数据,然后将数据写入到不同的目标系统(如 MongoDB)。原创 2024-06-18 19:50:54 · 1070 阅读 · 0 评论 -
flink 从monggo读取PB级全部数据根据分组统计数据 样例
【代码】flink 从monggo读取PB级全部数据根据分组统计数据 样例。原创 2024-06-18 19:39:59 · 745 阅读 · 0 评论 -
批量生产千万级数据 推送到kafka代码
1、随机IP生成代码2、指定时间范围内随机日期生成代码3、随机中文名生成代码。原创 2024-06-18 19:26:45 · 383 阅读 · 0 评论 -
Flink 命令行提交、展示和取消作业
这些命令应在 Flink 安装目录的命令行终端中执行。每个命令的具体参数和用法可以通过在命令后添加 --help 来查看详细的帮助信息,例如:./bin/flink run --help。以上命令假设你在Flink的命令行工具目录下执行,并且你有正确的权限和配置。如果你的Flink集群部署在远程服务器上,你可能需要通过SSH或其他方式连接到远程服务器,然后执行上述命令。这里,run是提交作业的命令,-c后面跟着的是主类的全路径,接着是jar文件的路径和可选的作业参数。原创 2024-06-12 08:15:51 · 972 阅读 · 0 评论 -
Flink mongo & Kafka
Apache Flink 是一个流处理和批处理的开源平台,用于在分布式环境中处理无界和有界数据流。它提供了用于数据处理的数据流 API(DataStream API)和表 API(Table API),并可以与各种外部数据源和存储系统进行交互。MongoDB 是一个基于文档的 NoSQL 数据库,它提供了高性能、可扩展和灵活的数据存储。而 Apache Kafka 是一个流处理平台,它允许发布和订阅记录流,类似于消息队列或企业消息系统。原创 2024-06-07 18:56:45 · 704 阅读 · 0 评论 -
Flink 容错
Flink的容错机制是确保数据流应用程序在出现故障时能够恢复一致状态的关键组成部分。其核心是通过创建分布式数据流和操作符状态的一致快照来实现,这种快照被称为检查点(Checkpoint)。原创 2024-06-05 18:22:50 · 970 阅读 · 1 评论 -
flink 状态
使用Flink的Stateful Functions API(如KeyedProcessFunction、ProcessFunction等)来定义和访问状态。通过getRuntimeContext().getState(…)或特定的状态描述符(如ValueStateDescriptor)来获取状态。Broadcast State用于保持所有子任务状态相同,确保当数据被广播到所有下游并行任务时,这些任务可以访问相同的状态数据。在这些任务中广播状态用于保持所有子任务状态相同。原创 2024-06-04 11:06:39 · 930 阅读 · 1 评论 -
Flink Watermark详解
Watermark 是用于处理流数据中事件时间(event time)乱序情况的重要机制。在流处理中,数据往往不是按照它们实际发生的时间顺序到达的,这可能是由于网络延迟、系统处理延迟或其他因素导致的。为了能够在这种乱序环境中正确地执行基于时间的操作(如时间窗口聚合),Flink 引入了 Watermark 的概念。Watermark 是一个特殊的标记,它表示“在此时间戳之前的数据应该都已经到达了”。原创 2024-06-04 08:03:12 · 1514 阅读 · 2 评论 -
flink 事件处理 CEP 详解
CEP(Complex Event Processing,复杂事件处理)是一个基于Flink Runtime构建的复杂事件处理库,它允许用户定义复杂的模式来检测和分析事件流中的复杂事件。原创 2024-05-30 18:11:36 · 1183 阅读 · 1 评论 -
flink 事件处理 CEP
CEP,即复杂事件处理,是一种可以在事件流中检测到特定的事件组合并进行处理的技术。它可以将简单事件通过一定的规则匹配组合成复杂事件,并基于这些复杂事件进行转换处理,得到想要的结果进行输出。原创 2024-05-30 17:33:52 · 1059 阅读 · 0 评论 -
flink 操作mongodb的例子
flink mongo从一个Collection获取数据然后插入到另外一个Collection中。原创 2024-05-30 08:54:44 · 1190 阅读 · 0 评论 -
Flink 数据源
在 Flink 中,数据源(Source)是其中一个核心组件,负责从各种来源读取数据供 Flink 程序处理。原创 2024-05-27 22:53:08 · 1375 阅读 · 0 评论 -
flink ExecutionEnvironment
在Apache Flink中,获取执行环境可以通过调用ExecutionEnvironment类的静态方法来实现。原创 2024-05-27 22:24:22 · 1090 阅读 · 0 评论 -
Flink 部署执行模式
Apache Flink 提供了多种部署模式,以适应不同的环境和需求。原创 2024-05-22 18:42:59 · 1630 阅读 · 0 评论 -
Flink parallelism 和 Slot 介绍
并行度(Parallelism):指的是一个算子(Operator)或任务(Task)的并行实例数量。换句话说,它决定了 Flink 集群中同时处理输入数据的子任务数量。Slot:在 Flink 中,一个 Slot 可以看作是一个 TaskManager 上的一个资源子集,用于执行一个或多个 Task(任务)。每个 TaskManager 可以拥有多个 Slot,而每个 Slot 可以执行一个或多个 Task。原创 2024-05-17 08:28:04 · 693 阅读 · 1 评论