Hdu 1166 线段树的运用

C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:”你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:”我知错了。。。”但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.

Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令

Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。

Sample Input
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End

Sample Output
Case 1:
6
33
59

想法:因为是对一个区间的维护以及访问,并且这个区间的有50000,比较大,所以用线段树会比较好,复杂度只有O(logn)。

#define _CRT_SECURE_NO_WARNINGS
#include <cstdio>
int num[50001];
struct node
{
    //int left, right;      //用结构储存这个叶子节点的信息,如区间和、区间最大最小值等。
    int sum;
};
node t[200001];
void creat(int x, int left, int right)
{
    if (left == right)      //说明到了最底层的叶子节点
    {
        t[x].sum = num[left];
        return;
    }
    creat(x * 2, left, (left + right) / 2);     //建立左子树
    creat(x * 2 + 1, (left + right) / 2 + 1, right);   //建立右子树
    t[x].sum = t[x * 2].sum + t[x * 2 + 1].sum;  //维护区间和
}
void add(int x, int left, int right, int pos, int q)
{
    if (left == right && right == pos)      //找到了要求的位置
    {
        t[x].sum += q;
        return;
    }
    if (pos <= (left + right) / 2)      //说明要找的位置在左子树
    {
        add(x * 2, left, (left + right) / 2, pos, q);
    }
    else        //说明要找的位置在右子树
    {
        add(x * 2 + 1, (left + right) / 2 + 1, right, pos, q);
    }
    t[x].sum = t[x * 2].sum + t[x * 2 + 1].sum;     //父亲节点进行更新
}
int count(int x, int left, int right, int lb, int rb)
//left和right是查询区间,lb和rb是目标区间。
{
    if (left == lb && right == rb)      //正好在这个区间
    {
        return t[x].sum;
    }
    if (rb <= (left + right) / 2)       //要找的区间在左子树
    {
        return count(x * 2, left, (left + right) / 2, lb, rb);
    }
    else if (lb > (left + right) / 2)       //要找的区间在右子树
    {
        return count(x * 2 + 1, (left + right) / 2 + 1, right, lb, rb);
    }
    else        //说明要找的区间在这个节点的两个子节点中都有。
    {
        return count(x * 2, left, (left + right) / 2, lb, (left + right) / 2) + count(x * 2 + 1, (left + right) / 2 + 1, right, (left + right) / 2 + 1, rb);
    }
}
int main(void)
{
    int i, j;
    int T;
    int n;
    char op[10];
    int t1, t2;
    scanf("%d", &T);
    for (i = 1; i <= T; i++)
    {
        scanf("%d", &n);
        for (j = 1; j <= n; j++)
        {
            scanf("%d", &num[j]);
        }
        creat(1, 1, n);
        printf("Case %d:\n", i);
        while (1)
        {
            scanf("%s", op);
            if (op[0] == 'E')
            {
                break;
            }
            else if (op[0] == 'A')
            {
                scanf("%d %d", &t1, &t2);
                add(1, 1, n, t1, t2);
            }
            else if (op[0] == 'S')
            {
                scanf("%d %d", &t1, &t2);
                add(1, 1, n, t1, -t2);      //减法是加法的逆运算。
            }
            else if (op[0] == 'Q')
            {
                scanf("%d %d", &t1, &t2);
                printf("%d\n", count(1, 1, n, t1, t2));
            }
        }
    }
    return 0;
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页