- 博客(60)
- 收藏
- 关注
原创 基于STM32与influxDB的电力监控系统-20
Python编写的接收程序在PC端持续监听并解析数据包,验证校验和后,将电流、电压的ADC原始值及转换后的实际值实时显示并写入InfluxDB时序数据库,构建了从嵌入式端数据采集、无线传输到云端存储的完整物联网解决方案,为后续的数据分析、可视化和设备监控提供了可靠的数据基础。
2025-10-12 15:40:07
29
原创 基于STM32与influxDB的电力监控系统-19
在main.c中添加 WKUP 按键功能,用于在 TCP 连接失败时重新连接 TCP 服务器。
2025-10-12 15:34:01
33
原创 基于STM32与influxDB的电力监控系统-18
bug修复:在页面切换时,静态变量prev_page被重置,导致WiFi状态显示区域被清除后没有重新绘制。
2025-10-12 15:31:27
31
原创 基于STM32与influxDB的电力监控系统-8
屏幕显示异常问题可能出现在页面切换时的显示逻辑上。当KEY1按到第三次后(切换到FATFS页面),再按回数据页面时,显示可能没有正确更新。
2025-09-30 19:30:00
49
原创 基于STM32与influxDB的电力监控系统-16
将WiFi所上传的数据格式由时间戳、电流ADC原始值、电压ADC原始值(2024-01-01 12:30:45,2048,4095)更改为包头(0x5A 0xA5) + 通道数(2) + 电流值(2字节) + 电压值(2字节) + 校验和。
2025-09-30 15:44:30
45
原创 基于STM32与influxDB的电力监控系统-13
修改程序,使STM32一上电就开始使用FATFS将电压电流的原始ADC数据写入SD卡。主要修改如下:上电自动初始化FATFS并开始数据记录修改数据记录内容为原始ADC数据调整数据记录格式。
2025-09-30 15:30:03
41
原创 基于STM32与influxDB的电力监控系统-12
使STM32一上电就开始使用FATFS将电压电流的原始ADC数据写入SD卡。主要修改如下:在main.c中添加必要的初始化和数据记录逻辑在sensor_system.c中添加原始ADC数据记录功能。
2025-09-30 15:26:58
48
原创 基于STM32与influxDB的电力监控系统-10
本文目标:修改demo.c文件,使其实现:当 ATK-MW8266D 成功连接 WIFI 和 TCP 服务器后,在默认没有进入透传的模式下,自动对 ATK-MW8266D 进行 AT 指令测试,如果 AT 指令测试成功,即开发板与 ATK-MW8266D 模块的通讯正常,自动配置 ATK-MW8266D 进入透传模式。
2025-09-30 15:17:41
29
原创 基于STM32与influxDB的电力监控系统-6
修改main.c文件,实现将负载电流和电压数据写入SD卡的功能,文件名带时间戳,数据格式为:日期时间,负载电压,负载电流。
2025-09-30 15:01:47
37
原创 基于STM32与influxDB的电力监控系统-3
修改main.c文件,实现通过 KEY1 切换三个界面:主界面(数据页面)、电流电压波形界面和 FATFS 界面。
2025-09-27 20:49:03
45
原创 基于STM32与influxDB的电力监控系统-2
电流互感器模块连接到ADC1的通道0(PA0)电压互感器模块连接到ADC1的通道1(PA1)修改main.c中的通道数:由于我们只有2个通道,所以将ADC_DMA_BUF_SIZE修改为2的整数倍,比如50*2(即每个通道50次采样)。在循环中,我们只需要处理2个通道,所以将循环条件改为j<2。
2025-09-27 20:31:28
51
原创 基于STM32与influxDB的电力监控系统-1
摘要:本文介绍了基于STM32与InfluxDB的电力监控系统开发教程,重点讲解如何将6通道ADC采集修改为2通道。系统通过电压/电流互感器采集数据,经ADC转换后显示在LCD屏上,并支持WiFi上传至InfluxDB数据库。教程详细演示了硬件配置和代码修改步骤,包括调整ADC_DMA_BUF_SIZE定义、修改通道初始化及显示逻辑等核心内容。该系统实现了电力参数的实时监测、数据存储与远程传输功能,整套程序售价999元(专栏读者优惠价700元)。
2025-09-27 20:09:31
311
原创 TensorFlow-GPU版本安装
本文记录了在RTX 5080笔记本GPU上安装TensorFlow-GPU版本的详细步骤。主要流程包括:创建conda环境、安装CUDA 11.2和cuDNN 8.1.0、使用pip安装TensorFlow(需指定版本<2.11)、验证安装等。特别强调了需在英文官网获取正确安装指引,并指出首次运行时可能出现30分钟左右的JIT编译过程。针对常见的NumPy版本冲突问题,给出了降级NumPy到1.x版本的解决方案。安装完成后可通过测试代码验证GPU是否正常工作。
2025-08-27 11:48:35
1490
原创 NILMTK(非侵入式负载监测工具包)安装
新建一个conda环境,然后在在终端中激活该环境之后,输入以下指令,NILMTK即可安装完成。注:如果是使用学校的网可能下载不了,此时可连接手机热点进行下载,后续步骤也类似。way1:Windows打开终端,输入以下指令安装独立安装包。way2:在conda环境中安装。step2:安装NILMTK。step1:安装uv。
2025-08-25 11:22:23
164
原创 ubuntu-相关指令
确认在系统中检查设备是否正常加载,在终端输入以下命令: ll /dev | grep ttyUSB(ll是LL的小写),ll /dev | grep ttyACM或者ll /dev | grep ttyCH343USB(ll是LL的小写)查串口号:sudo udevadm info /dev/ttyUSB0 | grep ID_SERIAL_SHORT。
2025-08-05 18:52:47
135
原创 jeston orin nx系统问题汇总
遇到浏览器打不开的问题,snap兼容性问题,可以用上面这个指令处理sudo snap revert snapd。
2025-07-31 18:34:23
198
原创 在Ultralytics YOLO中添加/更换模块详细指南
使用参数继承 my_module_args: &my_args [64, 3, 0.5] # 定义参数模板 backbone: - [-1, 1, MyModule, *my_args] # 引用参数。
2025-06-17 09:29:32
1429
原创 yolov5环境配置--详细版
打开计算机终端(win+R,输入cmd,即可进入),输入: cuda版本如下: 前往pytorch官网:PyTorch,选择相应的GPU版本。根据自己的 cudaversion的版本选择相应的pytorch版本。红色框处显示需要3.9或3.9以上的python版本 进入到python下载,根据2、下载并安装相应的python版本 安装python时,记得勾选红色框选项 vscode官网下载链接 vscode配置:
2025-06-12 22:41:56
1315
原创 目标检测:YOLOv11(Ultralytics)环境配置
YOLO11是Ultralytics公司YOLO系列实时目标检测器的最新迭代版本,它以尖端的准确性、速度和效率重新定义了可能实现的性能。在之前YOLO版本取得的显著进步基础上,YOLO11在架构和训练方法上进行了重大改进,使其成为各种计算机视觉任务中的通用选择。除了传统的目标检测外,YOLO11 还支持目标跟踪、实例分割、姿态估计、OBB定向物体检测(旋转目标检测)等视觉任务。
2025-04-15 15:14:12
3048
原创 MATLAB双目标定
左下方的直方图为左右图像的标定误差,点击误差较大的直方图,可以直接在左边的图像对中找到对应的图像,右键选择“Remove and Recalibrate”,可以重复上述步骤,直到认为误差满足标定需求为止。然后选择左右相机照片的路径,Size of checkerboard square为棋盘中每一个方格的长度,单位为毫米,一定要准确测量方格的长度,如下图所示。此时我们已经拿到标定数据了,为了避免手工获取数据时出错,笔者写了一个脚本可以直接获取标定数据,并保存到表格文件中,之后直接复制粘贴即可。
2025-04-10 18:46:57
1828
原创 YOLOv11改进 | YOLOv11s引入MobileNetV4——YOLOv11s_MV4
主要是对该文章进行复现,以及对一些问题进行解答。
2025-04-08 20:54:31
1825
3
原创 jeston orin nx--python程序编写中所遇到的问题集合
【代码】jeston orin nx--python程序编写中所遇到的问题集合。
2025-04-03 10:07:12
417
原创 YOLOv5--利用labelimg标注数据集
Labelimg是一个图形图像注释工具。它是用Python编写的,并使用Qt作为其图形界面。注释以PASCAL VOC格式保存为XML文件,这是使用的ImageNet格式。此外,它还支持YOLO格式和 CreateML 格式。本文主要记录利用labelimg标注数据集时所遇到的问题。
2025-02-13 10:23:18
2213
2
原创 YOLOv5环境配置--简约版
在训练深度学习模型时,通常需要处理大量的数据。GPU的高带宽内存和并行处理能力使其能够更高效地处理大规模数据。,大大缩短训练时间。本文主要记录自己在使用GPU训练YOLOV5所遇到的问题和解决方案。
2025-02-11 21:28:31
1870
原创 STM32-keil安装时遇到的一些问题以及解决方案
本人项目需要使用到STM32,故需配置keil5,在配置时遇到了以下问题,并找到相应的解决方案,希望能够为遇到相同问题的道友提供一些解决思路。
2025-01-15 22:25:43
1584
2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人