题目描述
 给出 
    
     
      
       
        n
       
      
      
       n
      
     
    n 个字符串,每个长度为 
    
     
      
       
        m
       
      
      
       m
      
     
    m。按照字典序排列。
 问是否其中有段子串,取所有串中
    
     
      
       
        (
       
       
        l
       
       
        ,
       
       
        r
       
       
        )
       
      
      
       (l,r)
      
     
    (l,r)位置的子串,排序后和原来顺序相同?
 并且使这个子串长度最小。
 输出一对满足的
    
     
      
       
        (
       
       
        l
       
       
        ,
       
       
        r
       
       
        )
       
      
      
       (l,r)
      
     
    (l,r)。
 输入
 n m
 n个长度为m的子串。每个占一行。
 输出
 一对满足的 
    
     
      
       
        (
       
       
        l
       
       
        ,
       
       
        r
       
       
        )
       
      
      
       (l,r)
      
     
    (l,r)。
样例输入
 【样例1】
 4 6
 aaaaaa
 aaabbb
 aaacaa
 aaacac
 【样例2】
 3 5
 cccca
 ccgda
 ccgia
样例输出
 【样例1】
 4 6
 【样例2】
 4 4
思考:
就是寻找其中的一段,依靠一段也能满足当前的排序。
 那就是剔除两端的,没必要的子串。
从第一个位置,向后延伸,判断最短能到哪个位置,使得所有串都能仍热满足次序。找到的这个位置就是最右端的位置了。
同样,要剔除左端多余部分:
 从上面找到的最右端位置向左延伸,找到最靠右的,能够满足的位置。这个位置就是满足条件的子串的最左端了。
但是一个位置一个位置遍历就要超时了。
 我们发现,假设是向右延伸,如果当前位置为最右端,能够满足(保持所有串次序),那后面的所有位置都也能满足。
 于是就满足了 二分 的使用条件:单调性。(前面是0,后面都是1)
实现:
从第一个位置,向右二分串的最右端位置(尽量靠左)。
 从这个最右端位置,向左二分串的最左端位置(尽量靠右)。
 右端点尽量靠左,左端点尽量靠右,这样才能使得子串长度最小。
Code:
#include <algorithm>
#include <iostream>
#include <cstring>
using namespace std;
const int N = 200010;
int T, n, m;
string a[N];
int ansl,ansr;
bool check(int mid)
{
	string s=a[1].substr(1,mid);
	for(int i=2;i<=n;i++)
	{
		string t=a[i].substr(1,mid);
		if(t<=s) return 0;
		s=t;
	}
	return 1;
}
bool check1(int mid)
{
	string s=a[1].substr(mid,ansr-mid+1);
	for(int i=2;i<=n;i++)
	{
		string t=a[i].substr(mid,ansr-mid+1);
		if(t<=s) return 0;
		s=t;
	}
	return 1;
}
int main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>a[i];
		a[i]=" "+a[i];
	}
	
	int l=1,r=m;
	while(l<r)
	{
		int mid=l+r>>1;
		if(check(mid)) r=mid;
		else l=mid+1;
	}
	
	ansr=l;
	
	l=1,r=ansr;
	while(l<r)
	{
		int mid=l+r+1>>1;
		if(check1(mid)) l=mid;
		else r=mid-1;
	}
	cout<<l<<" "<<ansr;
	
	return 0;
}
 
一个挖掘 二分答案 性质的 非常好的练习题。
                  
                  
                  
                  
                            
该博客探讨了一道编程题,涉及字符串字典序排列和子串搜索。题目要求找出一段子串,当只考虑这段子串时,所有字符串的排序仍然保持不变,并使子串长度最小。博主通过二分查找的方法,首先找到能保持顺序的最右端位置,然后从这个位置向左再次使用二分查找找到最左端位置,从而确定满足条件的子串。这是一个展示二分查找在解决特定字符串问题上的应用的好例子。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					317
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            