https://atcoder.jp/contests/abc269/tasks/abc269_g
题意
一共有 n 张卡片,每张卡片正面有数字
A
i
A_i
Ai,反面有数字
B
i
B_i
Bi。初始情况下所有卡片正面朝上。
∑
i
=
1
N
(
A
i
+
B
i
)
=
M
\sum_{i=1}^N\left(A_i+B_i\right)=M
∑i=1N(Ai+Bi)=M。
每次操作可以选择一张卡片将其翻转。
对于
k
=
0
,
1
,
2
,
.
.
.
,
M
k=0,1,2,...,M
k=0,1,2,...,M 分别求出:
最少使用多少次操作,使得所有面朝上的卡片数字之和为
k
k
k? 无解输出 -1。
- 1 ≤ N ≤ 2 × 1 0 5 1 \leq N \leq 2 \times 10^5 1≤N≤2×105
- 0 ≤ M ≤ 2 × 1 0 5 0 \leq M \leq 2 \times 10^5 0≤M≤2×105
- 0 ≤ A i , B i ≤ M 0 \leq A_i, B_i \leq M 0≤Ai,Bi≤M
- ∑ i = 1 N ( A i + B i ) = M \sum_{i=1}^N\left(A_i+B_i\right)=M ∑i=1N(Ai+Bi)=M
思路
从 n 个数中选择若干数,使得权值之和恰好等于 k,很容易想到 01背包。
背包初始已经拿了所有卡片正面上的数字,如果选择翻转一张卡片(拿上一个物品),背包体积增加
B
i
−
A
i
B_i - A_i
Bi−Ai(可能小于0),价值增加 1。
最后计算总体积恰好为 k 的情况下能拿到的最小价值。
即,f[sum]
初始为0,其余为正无穷,表示非法。最后的 f[k]
即为所求。
但是直接跑01背包时间复杂度爆炸。
然后就没有思路了。
当没有思路的时候,再留意一下数据范围,可能会给出一些提示。
注意到 ∑ i = 1 N ( A i + B i ) = M \sum_{i=1}^N\left(A_i+B_i\right)=M ∑i=1N(Ai+Bi)=M,那么 A i + B i A_i + B_i Ai+Bi 最多有 2 m \sqrt{2m} 2m 种,那么 B i − A i B_i - A_i Bi−Ai 最多有 2 2 m 2\sqrt{2m} 22m 种。
∑ x i < m \sum x_i < m ∑xi<m,则 x i x_i xi 最多有 2 m \sqrt{2m} 2m 种。
证明:为了让 x i x_i xi 在满足总和不超过 m m m 的情况下,种类尽可能多,那么 x i x_i xi 就要尽可能小,而且每个只出现一次。最佳情况下,从 1 开始往后数 1 , 2 , . . . n 1, 2, ... n 1,2,...n,那么求和 n ∗ ( n + 1 ) 2 \frac{n*(n+1)}{2} 2n∗(n+1) 就要小于等于 m,即 n ∗ ( n + 1 ) ≤ 2 m n*(n+1) \leq 2m n∗(n+1)≤2m,而 n ∗ ( n + 1 ) > n 2 n*(n+1) > n^2 n∗(n+1)>n2,那么 n 2 < 2 m n^2 < 2m n2<2m,即 n < 2 m n < \sqrt{2m} n<2m。
那么就相当于,一共 2 2 m 2\sqrt{2m} 22m 种物品,每种物品有若干个,问总体积恰好为 k 时能拿到的最小价值。转化为多重背包。
朴素的二重背包三重循环,超时。需要二进制优化,最后转化为 01 背包。
时间复杂度为: O ( m ∗ ∑ 1 t l o g s i ) , t 为种类数, s t 为每种的个数 O(m* \sum_1^t{log{s_i}}),t为种类数,s_t为每种的个数 O(m∗∑1tlogsi),t为种类数,st为每种的个数
但是需要注意的是,物品的体积有负值,体积正负不同时,枚举体积次序不同。
01背包优化成一维时按照倒序枚举体积,此时要保证体积必须为正值,才能保证当前用的是上一层来更新,不是这一层。
而此时如果体积是负值的话,减去一个负值相当于加上一个正值,倒序枚举正好用的是这一层,就会出现错误,所以是体积是负数的话就要倒过来正序枚举体积。
Code
#include<bits/stdc++.h>
using namespace std;
#define Ios ios::sync_with_stdio(false),cin.tie(0)
#define int long long
#define fi first
#define se second
#define endl '\n'
map<int, int> mp;
const int N = 5000010, mod = 1e9+7;
int T, n, m;
int a[N];
int v[N], w[N];
int f[N];
signed main(){
Ios;
cin >> n >> m;
int sum = 0;
for(int i=1;i<=n;i++)
{
int x, y; cin >> x >> y;
mp[y - x] ++;
sum += x;
}
for(int i=0;i<=m;i++) f[i] = 1e9;
f[sum] = 0;
int idx = 0;
for(auto it : mp)
{
int vv = it.fi, s = it.se;
int k = 1;
while(k <= s)
{
idx ++;
v[idx] = k * vv;
w[idx] = k;
s -= k;
k *= 2;
}
if(s > 0)
{
idx ++;
v[idx] = s * vv;
w[idx] = s;
}
}
n = idx;
for(int i=1;i<=n;i++)
{
if(v[i] > 0)
{
for(int j=m;j>=v[i];j--)
f[j] = min(f[j], f[j-v[i]] + w[i]);
}
else
{
for(int j=0;j<=m && j-v[i] <= m;j++)
f[j] = min(f[j], f[j-v[i]] + w[i]);
}
}
for(int j=0;j<=m;j++)
{
if(f[j] == 1e9) cout << -1 << endl;
else cout << f[j] << endl;
}
return 0;
}
经验
一定要注意
∑
x
<
M
\sum x < M
∑x<M 这样的条件,之前也碰见过一次,就是要利用种类数少这个条件。
然后就是注意多重背包体积为负数时,01背包第二维要正着更新。
第一次见,背包有初始体积,将其初始赋值为 0,去更新其他值。
最后,记一下今晚 cf 的惨痛教训:
看题之后发现有思路,然后就直接去写了,写完发现样例过不去,手推一下发现为什么样例是这样的呢?样例解释也没有说清楚,然后就陷入了深度的怀疑中,半小时没看懂样例。。
造成这种结果的原因可能就是先入为主的思想,加上已经把代码写出来了,就深信自己的思路没有问题,但样例就是不对,一直看看不出来,就卡住了。
所以一定要把样例都看过之后,再开始写代码。首先确保自己的题意理解的是对的!!
上周的网络赛也是,a题思路一开始想的是对的,写完代码之后发现第一个样例没过去,加上时间不多了,就觉得是自己想错了,就没接着往下想。其实一开始推样例的时候如果能发现这个不对,就可能多考虑一点,把这个环要处理两端的情况想进去。
有了思路一定要先把样例都过一遍啊!!