题目简述
给定一个范围在 1 ≤ a[i] ≤ n ( n = 数组大小 ) 的 整型数组,数组中的元素一些出现了两次,另一些只出现一次。
找到所有在 [1, n] 范围之间没有出现在数组中的数字。
您能在不使用额外空间且时间复杂度为O(n)的情况下完成这个任务吗? 你可以假定返回的数组不算在额外空间内。
示例 1:
输入:
[4,3,2,7,8,2,3,1]
输出:
[5,6]
题目分析
因为返回的数组不算做额外的空间复杂度,所以我用了暴力解题的方法,先对数组进行排序,如果后一个数减前一个数大于1说明这两个数中间有数缺失,把中间的数添加到数组中,然后再对头部和尾部进行相同处理即可。代码如下:
class Solution {
public:
vector<int> findDisappearedNumbers(vector<int>& nums) {
vector<int> lost;
int n=nums.size();
if(nums.size()==0)return lost;
sort(nums.begin(),nums.end());
if(nums[0]-1>=1){
int m=nums[0]-1;
for(int j=1;j<=m;j++)lost.push_back(j);
}
for(int i=0;i<n-1;i++){
if(nums[i+1]-nums[i]>1){
int m=nums[i+1]-nums[i];
for(int j=1;j<m;j++)lost.push_back(nums[i]+j);
}
}
if(n-nums[n-1]>=1){
int m=n-nums[n-1];
for(int j=1;j<=m;j++)lost.push_back(nums[n-1]+j);
}
return lost;
}
};
官方给的题解更为简单,思路也更为清晰,代码如下:
class Solution {
public:
vector<int> findDisappearedNumbers(vector<int>& nums) {
int n = nums.size();
for (auto& num : nums) {
int x = (num - 1) % n;
nums[x] += n;
}
vector<int> ret;
for (int i = 0; i < n; i++) {
if (nums[i] <= n) {
ret.push_back(i + 1);
}
}
return ret;
}
};