机器学习
LSG.haha
认真认真再认真,淡定淡定再淡定
展开
-
标量函数向量化
最近在学习的过程中,看到numpy有一个很好的功能,可以让原本只能处理单个变量的函数去处理数组形式的数据,即能处理列表形式的多个数据。详细如下:原创 2020-08-19 16:35:24 · 549 阅读 · 0 评论 -
numpy中array拼接方法
array拼接此处介绍有三种: np.concatenate函数,axis为0时,按行拼接,为1时按列拼接。用法如下: 定义数组a,b np.concatenate([a,b],axis=0) np.vstack与np.hstack函数,np.vstack按行拼接,np.hstack按列拼接。用法如下: np.vstack([a,b]) np.hstack([a,b]) np.r_与np.c_函数,np.r_按行拼接,原创 2020-08-19 16:11:00 · 14106 阅读 · 0 评论 -
关于tensorflow中tf.enable_eager_execution()相关问题
在使用tensorflow过程中,会有以下几个问题,在未在代码中添加tf.enable_eager_execution()之前会出现以下问题,在添加之后即可解决在运行grads = tape.gradient(loss, variables)这句代码时会报错:AttributeError: 'RefVariable' object has no attribute '_id' 在运行MLP模...原创 2019-12-28 10:19:31 · 2066 阅读 · 0 评论 -
机器学习——数据归一化
机器学习中,在数据预处理过程中,通过将数据归一化可以加快梯度下降求最优解的速度,也有可能提高模型计算的精度。常用的归一化方法主要有两种:最值归一化。比如把最大值归一化成1,最小值归一化成-1;或把最大值归一化成1,最小值归一化成0。适用于本来就分布在有限范围内的数据。 其中常用的方法有 线性比例变换法:yi = xi/max(x) 即归一化后结果等于未处理前值除以样本中最大值 ...原创 2019-06-11 10:43:59 · 1277 阅读 · 0 评论 -
《统计学习方法》读书笔记一
今天开始学习李航老师的统计学习方法一书,在学习过程中,一些比较重要或值得探讨的点会写成博客,与大家分享或共同讨论。统计学习方法是基于数据构建统计模型从而对数据进行预测与分析。统计学习主要由监督学习(supervised learning)、非监督学习(unsupervised learning)、半监督学习(semi-supervised learning)和强化学习(reinforcemen...原创 2019-06-17 09:50:12 · 267 阅读 · 0 评论 -
机器学习——感知机学习方法
1、我们常见的感知机算法就是PLA(perceptron linear algorithm,线性感知机算法)。通过对训练集训练不断修正得到的每个感知机模型,PLA在其生成过程中,不断判断其对未知类型的预测结果是否有错,若是有错,则继续修正,若是没有,则算法停止,得到最后的对未知类型预测准确的感知机。2、口袋算法(Pocket Algorithm),在得到所有的感知机模型之后,将所有的感知机模型...原创 2019-06-12 10:12:19 · 1139 阅读 · 0 评论 -
One-Hot编码
在编程的过程中,有时候我们需要把现实中具象的东西抽象成用0或者1表示的编码,从而能够让计算机去处理。One-Hot编码(独热编码)就是其中一种编码方式。下面我们来具体介绍:比如我们有三种食物,分别是西瓜、黄瓜、苹果,我们用三个特征值(蔬菜还是水果,大小,形状)来标识他们属于哪一种。 其中 西瓜:【水果,大,圆形】 黄瓜:【蔬菜,不大不小,长条形】 苹果:【蔬菜,小,圆形】 则...原创 2019-06-27 10:34:25 · 328 阅读 · 0 评论