一、数据模型与存储结构
-
MySQL(关系型数据库)
采用 表格模型,数据以行和列的形式存储,需预先定义严格的表结构(Schema)。例如,银行账户表必须包含固定字段(账号、余额、用户ID等),新增字段需修改表结构。这种模型适合结构化数据,但灵活性较低。 -
MongoDB(文档型NoSQL数据库)
数据以 BSON文档(类似JSON)形式存储,每个文档可包含不同字段和嵌套结构。例如,社交平台用户文档可动态添加“地理位置标签”或“兴趣图谱”字段,无需修改全局结构。这种灵活性使其在快速迭代的互联网产品中表现突出。
二、查询语言与操作方式
-
MySQL
使用 SQL 进行复杂查询,支持多表关联(JOIN)、聚合函数等。例如,生成财务报表时可通过JOIN
关联订单表和用户表,计算用户消费总额:SELECT u.user_id, SUM(o.amount) FROM users u JOIN orders o ON u.user_id = o.user_id GROUP BY u.user_id;
SQL功能强大但学习成本较高。
-
MongoDB
采用 链式查询语法,通过嵌套的JSON对象过滤数据。例如,查询年龄大于18的用户:db.users.find({ age: { $gt: 18 } });
语法直观但缺乏原生JOIN支持,复杂查询需依赖聚合管道(Aggregation Pipeline),代码复杂度较高。
三、事务与一致性
-
MySQL
完整支持 ACID事务,通过行级锁和事务隔离级别确保强一致性。例如,转账操作中扣减A账户余额并增加B账户余额,必须保证原子性,避免中间状态导致数据错误。 -
MongoDB
从4.0版本开始支持 多文档事务,但性能开销较大,且跨分片事务仍存在限制。其优势在于最终一致性设计,适合日志记录、实时分析等允许短暂数据不一致的场景。
四、扩展性与性能
-
MySQL
• 垂直扩展:通过升级单机硬件(CPU、内存)提升性能,但成本高且存在上限。
• 水平扩展:需借助分库分表或中间件(如MyCAT),复杂度高。 -
MongoDB
• 原生分片(Sharding):自动将数据分布到多台服务器,支持海量数据存储和高并发读写。
• 副本集(Replica Set):通过主从复制实现高可用,故障时自动切换。
五、适用场景对比
场景 | MySQL优势 | MongoDB优势 |
---|---|---|
数据结构复杂度 | 结构化数据(金融、ERP) | 半/非结构化数据(社交动态、IoT传感器) |
事务需求 | 强一致性(支付、订单) | 最终一致性(日志、内容管理) |
查询复杂度 | 多表关联、复杂聚合 | 简单过滤、嵌套文档查询 |
扩展性需求 | 中低规模数据,垂直扩展 | 超大规模数据,水平扩展 |
六、选型建议
-
选择MySQL的典型场景
• 需要强事务保障(如金融系统)
• 数据高度结构化且模式稳定(如CRM系统)
• 复杂报表生成(涉及多表JOIN) -
选择MongoDB的典型场景
• 快速迭代的业务(如社交平台动态字段)
• 高吞吐写入(如实时日志分析)
• 分布式存储需求(如全球部署的IoT平台)
总结
两者并非对立,而是互补工具。例如,电商平台可用 MySQL 存储订单和用户关系(保证事务),同时用 MongoDB 存储商品评论和用户行为日志(灵活扩展)。理解业务需求的核心矛盾(如一致性 vs 灵活性、复杂查询 vs 写入性能)是选型的关键。