(八)二叉树—二叉排序树

该代码示例展示了如何在Java中创建和删除二叉排序树的节点。首先,通过一组数字创建了二叉排序树,然后演示了删除不同类型的节点(叶子节点、单子树非叶子节点和双子树非叶子节点)的过程,并通过中序遍历展示删除后的树结构。
摘要由CSDN通过智能技术生成

1、基本介绍

二叉排序树的创建

二叉排序树的删除

 

2、应用实例

package tree;

public class BinarySortTreeDemo {
    public static void main(String[] args) {
        BinarySortTree binarySortTree = new BinarySortTree();
        int arr[] = {7, 3, 2, 11, 10, 12, 5, 1, 9};
        for (int temp : arr) {
            binarySortTree.add(new SNode(temp));
        }

        System.out.print("删除节点前:");
        binarySortTree.inOrderTraverse();

        //  删除叶子节点
//        binarySortTree.delSNode(2);
//        binarySortTree.inOrderTraverse();

        //  删除带一棵子树的非叶子节点
//        binarySortTree.delSNode(1);
//        binarySortTree.inOrderTraverse();

        //  删除带两棵子树的非叶子节点
        binarySortTree.delSNode(10);

        System.out.print("删除节点后:");
        binarySortTree.inOrderTraverse();
    }
}

class BinarySortTree {
    public SNode root;

    //  添加节点
    public void add(SNode SNode) {
        if (this.root == null) { // 判断当前是否是空树,是的话直接赋给root
            this.root = SNode;
        } else {
            this.root.add(SNode);
        }
    }

    //  中序遍历
    public void inOrderTraverse() {
        if (this.root != null) {
            this.root.inOrderTraverse();
            System.out.println();
        } else {
            return;
        }
    }

    //  删除节点
    public void delSNode(int data) {
       if (this.root == null) {
           return;
       } else {
           this.root.delSNode(data);
       }
    }

    //  查找待删节点
    public SNode searchDelSNode(int data) {
        if (this.root == null) {
            return null;
        } else {
            return this.root.searchDelSNode(data);
        }
    }

    //  查找待删节点的父结点
    public SNode searchParentSNode(int data) {
        if (this.root == null) {
            return null;
        } else {
            return this.root.searchParentSNode(data);
        }
    }

    public int searchRightMin(SNode SNode) {
        if (this.root == null) {
            return -1;
        } else {
            return this.root.searchRightMin(SNode);
        }
    }

    public int searchLeftMax(SNode SNode) {
        if (this.root == null) {
            return -1;
        } else {
            return this.root.searchLeftMax(SNode);
        }
    }
}

class SNode {
    public int data;
    public SNode left;
    public SNode right;
    public SNode(int data) {
        this.data = data;
        this.left = null;
        this.right = null;
    }

    //  添加节点
    public void add(SNode SNode) {
        if (SNode == null) {
            return;
        }
        //  先判断大小,决定是放左子树还是右子树
        if (SNode.data > this.data) {
            //  要放右边的话,判断其右子树是否为空
            if (this.right == null) {
                this.right = SNode;
            } else {
                this.right.add(SNode);
            }
            //  要放左边的话,判断其左子树是否为空
        } else {
            if (this.left == null) {
                this.left = SNode;
            } else {
                this.left.add(SNode);
            }
        }
    }

    //  中序遍历
    public void inOrderTraverse() {
        if (this.left != null) {
            this.left.inOrderTraverse();
        }
        System.out.print(this.data + " ");
        if (this.right != null) {
            this.right.inOrderTraverse();;
        }
    }

    public void delSNode(int data) {
        SNode targetSNode = searchDelSNode(data);
        SNode parentSNode = searchParentSNode(data);
        if (targetSNode == null || parentSNode == null) {
            return;
        }
        //   第一种情况:删除的是叶子节点
        if (targetSNode.left == null && targetSNode.right == null) {
            //  判断删除节点是父节点的左子节点还是右子结点,从而对应删除
            if (parentSNode.left == targetSNode)  {
                parentSNode.left = null;
            } else if (parentSNode.right == targetSNode) {
                parentSNode.right = null;
            }

            //   第二种情况:删除的是只有一棵子树的非叶子节点
        } else if ((targetSNode.left == null && targetSNode.right != null) ||
                (targetSNode.left != null && targetSNode.right == null)) {
            //  先判断删除节点有左子树还是右子树
            // 有左子树
            if (targetSNode.left != null) {
                //  再判断它是父节点的左子节点还是右子节点
                if (targetSNode == parentSNode.left) {
                    parentSNode.left = targetSNode.left;
                } else if (targetSNode == parentSNode.right) {
                    parentSNode.right = targetSNode.left;
                }
                //  右子树
            } else if (targetSNode.right != null) {
                //  再判断它是父节点的左子节点还是右子节点
                if (targetSNode == parentSNode.left) {
                    parentSNode.left = targetSNode.right;
                } else if (targetSNode == parentSNode.right){
                    parentSNode.right = targetSNode.right;
                }
            }

            //   第三种情况:删除的是有两棵子树的非叶子节点
        } else if (targetSNode.left != null && targetSNode.right != null) {
            //  无需判断删除节点是父节点的左子树还是右子树
            //  只需找到删除节点的右子树的最小节点 或者 找到删除节点的左子树的最大节点
//            int temp = searchRightMin(targetSNode.right);
            int temp  = searchLeftMax(targetSNode.left);
            targetSNode.data = temp;
        }
    }

    public SNode searchDelSNode(int data) {
        if (this.data == data) {
            return this;
        } else if (data <= this.data) {
            if (this.left != null) {
                return this.left.searchDelSNode(data);
            }
        } else {
            if (this.right != null) {
                return this.right.searchDelSNode(data);
            }
        }
        return null;
    }

    public SNode searchParentSNode(int data) {
        if ((this.left != null && this.left.data == data) ||
                (this.right != null && this.right.data == data)) {
            return this;
        } else {
            if (this.left != null && data < this.data) {
                return this.left.searchParentSNode(data);
            }else if (this.right != null && data > this.data) {
                return this.right.searchParentSNode(data);
            } else {
                return null;
            }
        }
    }

    public int searchRightMin(SNode SNode) {
        //  找该节点所在子树的最小值(根据二叉排序树特点,一般在最左边)
        SNode temp = SNode;
        while (temp.left != null) {
            temp = temp.left;
        }
        delSNode(temp.data);  // 删除该最小子结点
        return temp.data;
    }

    public int searchLeftMax(SNode SNode) {
        //  找该节点所在子树的最大值(根据二叉排序树特点,一般在最右边)
        SNode temp = SNode;
        while (temp.right != null) {
            temp = temp.right;
        }
        delSNode(temp.data);  // 删除该最小子结点
        return temp.data;
    }

    @Override
    public String toString() {
        return "SNode[data=" + this.data + "]";
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来得晚一些也行

观众老爷,请赏~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值