匆匆(朱自清)你聪明的,告诉我,我们的日子为什么一去不复返呢?

燕子去了,有再来的时候;杨柳枯了,有再青的时候;桃花谢了,有再开的时候。但是,聪明的,你告诉我,我们的日子为什么一去不复返呢?——是有人偷了他们罢:那是谁?又藏在何处呢?是他们自己逃走了罢:现在又到了哪里呢?
  我不知道他们给了我多少日子;但我的手确乎是渐渐空虚了。在默默里算着,八千多日子已经从我手中溜去;像针尖上一滴水滴在大海里,我的日子滴在时间的流里,没有声音,也没有影子。我不禁头涔涔而泪潸潸了。
  去的尽管去了,来的尽管来着;去来的中间,又怎样地匆匆呢?早上我起来的时候,小屋里射进两三方斜斜的太阳。太阳他有脚啊,轻轻悄悄地挪移了;我也茫茫然跟着旋转。于是——洗手的时候,日子从水盆里过去;吃饭的时候,日子从饭碗里过去;默默时,便从凝然的双眼前过去。我觉察他去的匆匆了,伸出手遮挽时,他又从遮挽着的手边过去,天黑时,我躺在床上,他便伶伶俐俐地从我身上跨过,从我脚边飞去了。等我睁开眼和太阳再见,这算又溜走了一日。我掩着面叹息。但是新来的日子的影儿又开始在叹息里闪过了。
  在逃去如飞的日子里,在千门万户的世界里的我能做些什么呢?只有徘徊罢了,只有匆匆罢了;在八千多日的匆匆里,除徘徊外,又剩些什么呢?过去的日子如轻烟,被微风吹散了,如薄雾,被初阳蒸融了;我留着些什么痕迹呢?我何曾留着像游丝样的痕迹呢?我赤裸裸来到这世界,转眼间也将赤裸裸的回去罢?但不能平的,为什么偏要白白走这一遭啊?
  你聪明的,告诉我,我们的日子为什么一去不复返呢?
  1922年3月28日
  (原载1922年4月11日《时事新报·文学旬刊》第34期)
从程序员的视角,看计算机系统! 本书适用于那些想要写出更快、更可靠程序的程序员。通过掌握程序是如何映射到系统上,以及程序是如何执行的,读者能够更好的理解程序的行为为什么是这样的,以及效率低下是如何造成的。粗略来看,计算机系统包括处理器和存储器硬件、编译器、操作系统和网络互连环境。而通过程序员的视角,读者可以清晰地明白学习计算机系统的内部工作原理会对他们今后作为计算机科学研究者和工程师的工作有进一步的帮助。它还有助于为进一步学习计算机体系结构、操作系统、编译器和网络互连做好准备。 本书的主要论题包括:数据表示、C程序的机器级表示、处理器结构,程序优化、存储器层次结构、链接、异常控制流、虚拟存储器和存储器管理、系统级I/O、网络编程和并发编程。书中所覆盖的内容主要是这些方面是如何影响应用和系统程序员的。例如,在讲述数据表示时,本书说明了用来表示数字的表示方法是有限的,它能够近似地表示整数和实数,但是这种表示方法是有限制的,程序员必须了解。在讲述高速缓存时,本书讨论了矩阵代码中的循环变量的顺序是如何影响程序的性能的。在讨论网络互连时,本书描述了并发服务器如何能有效地处理来自多个客户端的请求。 本书基于Intel兼容(IA32)机器,在Unix或者相关的操作系统(例如,Linux)上执行C程序。虽然书中包括了一些帮助读者将Java转化成C的提示,但是还是要求读者对C或者C++有一定的了解。 您可以通过本书的Web网站www.csapp.cs.cmu.edu获得完整的资料,包括实验和作业,授课笔记和代码示例。 本书英文版久负盛名,被众多专业人士称为“最伟大的计算机教材”之一,著名的美国卡内基梅隆大学计算机科学系一直将本书作为教材使用,程序员眼中的透彻讲述计算机系统的扛鼎之作。作者Randal E. Bryant是卡耐基梅隆大学的计算机科学系主任,ACM和IEEE双院士(Fellow),其研究成果多次获得ACM和IEEE颁发的大奖。   本书共分十三章,分别介绍了信息的表示和处理、程序的机器级表示、处理器体系结构、存储器层次结构、静态和动态链接、虚拟存储器、系统级I/O、网络编程和并发编程等精彩内容。其目的是解释计算机系统的所有本质概念,并向读者展示这些概念是如何实际地影响应用程序的正确性、性能和实用性。与其他主要针对系统构造人员的系统类书籍不同,这本书是写给程序员的,是从程序员的角度来描述的。本书为软件和硬件之间搭起了一个桥梁,它给出了一种帮助读者分别从硬件和软件的角度去理解一个程序及其行为的途径,这也填补了国内计算机系统教学中的一个空白。本书的最大优点是帮助读者理解概念,让读者很清楚地在脑海中构造一个层次型的计算机系统,从最低层数据在内存中的表示(如我们一直陌生的浮点数表示),到流水线指令的构成,到虚拟存储器,到编译系统,到动态加载库,到最后的用户应用。   本书提供了大量的例子和练习及部分答案。尤其值得一提的是,对于每一个基本概念都有相应的笔头或程序试验,加深读者的理解。
在PyCharm中编写并执行用于分析朱自清《荷塘月色》文本数据的Python代码,可以按照以下步骤操作: 1. **创建新项目**: - 打开PyCharm,选择"File" > "New" > "Project",选择"Python"作为模板。 2. **设置虚拟环境** (可选): - 如果需要,可以在新建项目的对话框中勾选"Create Virtual Environment"来创建一个新的Python环境,这有助于管理依赖。 3. **创建主文件**: - 右键点击项目结构,选择"New" > "Python File",创建一个新的Python文件,比如`analyse_text.py`。 4. **导入所需库**: - 在`analyse_text.py`中,添加必要的自然语言处理(NLP)库,如`nltk`、`jieba`等(如果要分词),以及数据分析库如`pandas`和`matplotlib`。 5. **读取文本数据**: - 使用内置函数`open()`打开文本文件,例如`with open('荷塘月色.txt', 'r') as file:`,然后将内容读入变量。 6. **预处理文本**: - 清洗文本,去除标点符号、换行符,并进行分词(如果是中文)。 7. **数据分析**: - 使用`pandas`处理文本数据,计算词频、情感分析等。 8. **可视化结果**: - 如果有需要,用`matplotlib`或`seaborn`绘制词云图、频率分布等图表。 9. **运行代码**: - 在PyCharm底部的运行窗口或快捷键`Shift + F10`运行当前文件。 ```python # 示例代码片段 import nltk from nltk.corpus import stopwords import jieba import pandas as pd def process_text(text): # 分词 if text.startswith('朱自清'): text = text[len('朱自清《荷塘月色》'):].strip() tokens = jieba.lcut(text) # 去除停用词 stop_words = set(stopwords.words('chinese')) filtered_tokens = [token for token in tokens if not token in stop_words] return filtered_tokens with open('荷塘月色.txt', 'r', encoding='utf-8') as file: text = file.read() tokens = process_text(text) word_counts = Counter(tokens) # 数据分析和可视化 df_word_counts = pd.DataFrame.from_dict(word_counts, orient='index', columns=['Count']) df_word_counts.plot(kind='bar') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值