【AIGC】Stable Diffusion原理快速上手,模型结构、关键组件、训练预测方式

【AIGC】Stable Diffusion的建模思想、训练预测方式快速

在这篇博客中,将会用机器学习入门级描述,来介绍Stable Diffusion的关键原理。目前,网络上的使用教程非常多,本篇中不会介绍如何部署、使用或者微调SD模型。也会尽量精简语言,无公式推导,旨在理解思想。让有机器学习基础的朋友,可以快速了解SD模型的重要部分。如有理解错误,请不吝指正。

大纲

  1. 关键概念
  2. 模型结构及关键组件
  3. 训练和预测方式

关键概念

名词解释

Stable Diffusion

之所以叫Stable,是因为金主公司叫StabilityAI。

其基础模型是Latent Diffusion Model(LDM),也是本文主要介绍的部分。

模型任务

  1. text-2-img:输入文本描述、输出图像
  2. img-2-img:输入图片及其他文本描述,输出图像

总的来说,不论是输入是文字还是图片,都可以称为是“condition”,用于指引图像生成的“方向”。因此,SD模型的任务,可以统称为是cond-2-img任务。

模型任务

模型结构与关键组件

模型结构

LDM论文结构图,初看时会有点懵,但稍微理解后还是非常清晰准确的。先初步介绍几个大的模块。建议把这张图截图固定在屏幕上,再继续浏览下面的内容。

模型结构

整体输入输出

上图中最左侧的 x x x x ~ \widetilde{x} x 是模型的输入与输出,形如 [ W , H , C ] [W, H, C] [W,H,C]的三维张量,代表一张图像的宽、高和通道数。

需要注意,这里的输入 x x x,并不是模型img-2-img中的输入图像,而是模型训练时的原始图像输入。img-2-img的输入图像,是上图中最右侧的Conditioning模块中的images。

像素空间与隐空间

所谓空间,可以理解为数据的表示形式,通常有着不同的坐标轴。

  • 像素空间(Pixel Space),上图左侧,红框部分。通常是人眼可以识别的图像内容。
  • 隐空间(Latent Space),上图中央,绿框部分。通常是人眼无法识别的内容,但包含的信息量与像素空间相近。

像素空间到隐空间

输入的图像 x x x,经过Encoder(图中蓝色的 E \mathcal{E} E),转换为另一种shape的张量 z z z,即称为隐空间。

从压缩角度理解:图像经过转换后,产生的新张量是人眼无法识别的。但其包含的信息量相差不大,数据尺寸却大幅缩小,因此可以看做是一种图像数据压缩方式

隐空间到像素空间

经过模型处理后的隐向量输出 z z z(特指绿框左下角的 z z z),经过Decoder(图中蓝色的 D \mathcal{D} D),转换回像素空间。

隐空间Diffusion操作

对应图中绿色Latent Space框的上半部分,包括以下三步:

  1. 图像经过Encoder压缩后,得到隐向量表示 z = E ( x ) z=\mathcal{E}(x) z=E(x)隐向量
  2. 从1~1000的均匀分布中,随机采样一个整数 T T T,称为扩散步数
  3. 对向量 z z z T T T次高斯噪声,满足分布 N ( 0 , β t ) N(0, \beta_t) N(0,βt),得到 z T z_T zT向量

在这个操作中,有一些有趣的特性:

噪声收敛

加噪声次数足够多时,理论上会得到一组符合高斯分布的噪声。利用这个特性,在预测阶段我们就不需要执行Diffusion操作,只需要采样一组高斯分布的噪声,即代表了 z T z_T zT

高斯噪声可加性

当我们需要得到任意时刻的 z T z_T zT时,可以直接从 z 0 z_0 z0以及一系列 β t \beta_t βt计算得到,只需要采样一次噪声。这部分的具体公式推导,可以参考由浅入深了解Diffusion Model - 知乎 (zhihu.com)

隐空间Denoising操作

对应图中绿色框的下半部分,包括以下步骤:

  1. 输入 z t , t , c o n d z_t,t,cond zt,t,cond给U-Net结构,预测出一个噪声 ϵ θ ( z t , t , c o n d ) \epsilon_{\theta}(z_t,t,cond) ϵθ(zt,t,cond),shape与 z t z_t zt一致
  2. 使 z t − 1 = z t − ϵ θ ( z t , t , c o n d ) z_{t-1} = z_t - \epsilon_{\theta}(z_t,t,cond) zt1=ztϵθ(zt,t,cond),重复上一步骤,直至获得 z 0 z_0 z0隐向量
  3. 使用Decoder得到输出图像, x ~ = D ( z 0 ) \widetilde{x} = \mathcal{D}(z_0) x =D(z0)

条件Conditioning

对应图中最右边灰白色框,输入类型包括text、images等。在Conditioning模块中,会执行以下步骤:

  1. 这些“附加信息”会通过对应的编码器 τ θ \tau_\theta τθ,转换成向量表示
  2. 转换后的向量,会输入给U-Net,作为其中Attention模块的K、V输入,辅助噪声的预测

在这个模块中,有几个有趣的问题:

为什么需要Conditioning

由于“噪声收敛”特性,当噪声加得比较多时, z T z_T zT已经趋近于一个“纯噪声”了,但训练过程需要比对输入图像 x x x和输出图像 x ~ \widetilde{x} x 的相似度。如何从一个“纯噪声”,还原回与输入图像相似的图像,就必须要给模型提供额外的信息指引,这就是Conditioning的作用。

关键组件

VAE(Variational Auto Encoders)

在LDM中,如何将原始图片“压缩”转换至隐空间,经过处理再转换回来,即使用VAE的Encoder和Decoder。这个模块是预训练好的,在LDM训练时固定住参数。

原理

  1. 原始张量输入,经过非常简单的网络结构,转换成较小的张量
  2. 在Latent张量上,加一点点噪声扰动
  3. 用对称的简单网络结构,还原回原始大小
  4. 对比输入前后的张量是否相似

特点

  1. 网络计算复杂度比较低
  2. Encoder和Decoder可以分开使用
  3. 无监督训练,不需要标注输入的label
  4. 有了噪声扰动之后,Latent Space的距离具有实际物理含义,可以实现例如“(满杯水+空杯子)/ 2 = 半杯水”的操作

VAE

CLIP

文本信息如何转换成张量,靠的是CLIP模块。这个模块是预训练好的,在LDM训练时固定住参数。

训练方式

图像以及它的描述文本,经过各自的Encoder转换为向量表示,希望转换后的向量距离相近。经过训练后,文本描述可以映射到向量空间的一个点,其代表的物理含义与原始图像相近。

CLIP

假设无预训练

开个脑洞,假如没有这个模块,直接将文本token化后,去Embedding Table中查表作为文本张量,理论上也是可以训练的,只不过收敛速度会慢很多。

因此,这里使用一个预训练text-2-embedding模块,主要目的是加速训练。CLIP的训练数据集,也选择了和LDM的数据集的同一个(LAION-5B的子集),语义更一致。

模型标识解释

我们经常会看到类似“ViT-L/14”的模型名,表示一种CLIP的结构。具体的,ViT表示Vision Transformer,L表示Large(此外还有Base、Huge),14表示训练时把图像划分成14*14个子图序列输入给Transformer。

模型标识解释

U-Net

作为LDM的核心组件,U-Net是模型训练过程中,唯一需要参数更新的部分。在这个结构中,输入是带有噪声的隐向量 z t z_t zt、当前的时间戳 t t t,文本等Conditioning的张量表示 E E E,输出是 z t z_t zt中的噪声预测。

模型任务

U-Net的任务,就是从 z t z_t zt中预测出噪声部分 ϵ t \epsilon_t ϵt,从而得到降低噪声后的 z t − 1 = z t − ϵ t z_{t-1}=z_t - \epsilon_t zt1=ztϵt,直到获得 z 0 z_0 z0。下图是一个可视化示意图,实际上,我们去噪的 z t z_t zt是隐向量空间的数据,人眼无法识别。

U-Net模型任务

模型结构

U-Net大致上可以分为三块:降采样层、中间层、上采样层。之所以叫U-Net,是因为它的模型结构类似字母U。

U-Net模型结构

降采样层

  1. 时间戳 t t t转换为向量形式。用的是“Attention is All you Need”论文的Transformer方法,通过sin和cos函数再经过两个Linear进行变换
  2. 初始化输入 X = c o n v ( c o n c a t ( z t , E ) ) X = conv(concat(z_t, E)) X=conv(concat(zt,E)),其中 c o n v conv conv是卷积, E E E是Conditioning
  3. 重复以下步骤(a~c)多次,将输入尺寸降至目标尺寸(如上图的 4 × 4 4\times4 4×4
    1. 重复以下两步多次,训练多个ResBlock和SpatialTransformer层,输入值 X X X的尺寸不变
      1. 输入上一层的输出 X X X和时间戳向量,给ResBlock
      2. ResBlock的输出,与 E E E一起输入给SpatialTransformer,在这里考虑到text等信息
    2. 重复多次3~4步,
    3. 通过卷积或Avg-Pooling进行降采样,缩小 X X X的尺寸

U-Net模型结构-1
U-Net模型结构-2

中间层

很简单,ResBlock + SpatialTransformer + ResBlock,输入 X X X尺寸不变。

上采样层

大部分步骤与降采样层一致,只有以下两点不同

  1. 输入 X X X需要拼上对应降采样层的输出,称为skip connection,对应U-Net结构图中横向的箭头
  2. 把降采样步骤,换成使用卷积或插值(interpolate)方式来上采样,使得 X X X的尺寸增大

输出

上采样层的输出,会经过normalization + SiLU + conv,得到U-Net的最终输出,即噪声的预测值,尺寸保持与输入 z t z_t zt一致。

训练方式

模型更新方式

LDM模型需要训练的部分,只有U-Net的参数。训练的方式,可以简单总结为:

  1. 输入一张图片 x x x,以及它的文本描述等Conditioning,一个随机的整数 T T T
  2. 经过Encoder压缩、Diffusion加噪声,得到 z T z_T zT隐向量
  3. 结合Conditioning,使用U-Net,进行 T T T次去噪,得到预测值 z 0 z_0 z0向量
  4. 使用Decoder还原回 x ~ \widetilde{x} x ,计算 x x x x ~ \widetilde{x} x 之间的差距(KL散度),得到模型更新的loss

模型预测方式

  1. 随机一个高斯噪声,作为 z T z_T zT向量
  2. 输入text等Conditioning,使用U-Net进行指定次数 T T T的去噪操作
  3. 使用Decoder还原回 x ~ \widetilde{x} x ,得到图像输出

训练、预测过程,在论文中的伪代码为下图所示。
模型训练预测伪代码

展望

下一篇文章,将会讨论以下几个更深入的内容:

  1. ControlNet、LoRA等插件的实现
  2. 各种Conditioning Context是如何转换为张量的
  3. 训练的数据集情况

参考

The Illustrated Stable Diffusion – Jay Alammar – Visualizing machine learning one concept at a time. (jalammar.github.io)

【原创】万字长文讲解Stable Diffusion的AI绘画基本技术原理 - 知乎 (zhihu.com)

Diffusion Models:生成扩散模型 (yinglinzheng.netlify.app)

由浅入深了解Diffusion Model - 知乎 (zhihu.com)

How does Stable Diffusion work? - Stable Diffusion Art (stable-diffusion-art.com)

[2006.11239] Denoising Diffusion Probabilistic Models (arxiv.org)

CompVis/latent-diffusion: High-Resolution Image Synthesis with Latent Diffusion Models (github.com)

  • 14
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
"AIGC稳定扩散"是指人工智能全球中心(AIGC)通过稳定的扩散方法来推广和普及人工智能技术。 首先,AIGC稳定扩散的目标是将人工智能技术应用于各个领域,从而促进社会的发展和进步。通过稳定的扩散,AIGC能够确保人工智能技术的普及和应用是在可靠和可持续的基础上进行的。 其次,在AIGC稳定扩散的过程中,重点关注技术的质量和适用性。AIGC积极筛选和评估现有的人工智能技术,并与专家和机构合作改进和优化。通过确保技术的高质量和适用性,AIGC能够提供可靠和稳定的解决方案,满足不同行业和领域的需求。 另外,AIGC稳定扩散还注重普及和教育。AIGC通过举办培训、研讨会和交流活动,向各界人士普及人工智能技术的基础知识和应用方法。定期发布人工智能技术的最新发展和成果,提供资源和支持,帮助更多的人了解和应用人工智能技术。 最后,AIGC稳定扩散还重视合作和共享。AIGC与各国和地区的研究机构、企业和政府合作,共享资源和经验,促进人工智能技术的交流和发展。通过建立良好的合作网络,AIGC能够更好地推广人工智能技术,建立全球范围内的合作关系,实现共同的发展目标。 总而言之,AIGC稳定扩散是为了推广和普及人工智能技术而采取的稳定方法。通过质量和适用性的保证、普及和教育的重视,以及合作和共享的策略,AIGC致力于实现人工智能技术的广泛应用,推动社会的发展和进步。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值