题目链接:http://codeforces.com/contest/766/problem/C
开始的时候直接想到dfs,然后估摸着会超时,然后却选择性忽略了,因为写着写着就瞎掰出了一个故事:
n个年轻人在一片未开发的市场上创业的故事,故事最后的结局是超时。。
dfs实质还是遍历搜索,我没有剪枝(不知道咋剪),重复计算量太大,所以写完以后不仅是超时,而且是爆超。。test4就t了。。
无限制的情况下: 铁定超啊。。
超时Dfs代码(纪念一下,哈哈):
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define FOR(i,k,n) for(int i=k;i<n;i++)
#define FORR(i,k,n) for(int i=k;i<=n;i++)
#define scan(a) scanf("%d",&a)
#define scann(a,b) scanf("%d%d",&a,&b)
#define scannn(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define mst(a,n) memset(a,n,sizeof(a))
#define ll long long
#define N 1005
#define mod 1000000007
#define INF 0x3f3f3f3f
const double eps=1e-8;
const double pi=acos(-1.0);
int n;
char s[N];
int mLen[26];
ll tot;
int maxLen;
int minCnt;
void Dfs(int i,int cnt)//以i为首,i要创建公司
{
//cout<<"test";
if(i==n)
{
tot++;
minCnt=min(minCnt,cnt);
return ;
}
int j=i+1;
int minLen=mLen[s[i]-'a'];//董事会的要求
while(j<i+minLen&&j<n)//经董事会协商同意
{
if(j-i+1<=mLen[s[j]-'a'])
{
Dfs(j,cnt+1);//年轻人同意了,但为了自己当初的梦想仍要先出去闯荡一下,去创下业先
//年轻人闯荡归来,进入董事会,成为董事会一员
maxLen=max(maxLen,j-i+1);
minLen=min(minLen,mLen[s[j]-'a']);
j++;
}
else
{
//Dfs(j,cnt+1);//1.董事会同意但年轻人自己不同意,不愿为人臣,自己去开天辟地
break;
}
}
//if(j>=i+minLen)//2.董事会不同意,年轻人只能去自立门户
//if(j<i+minLen&&j>=n)//3.董事会同意,但没人了,j==n要进入Dfs进行计数
//if(j>=i+minLen&&j>=n)//4.董事会不同意,刚好也没人了,j==n要进入Dfs进行计数
Dfs(j,cnt+1);//1234四种情况整合到一起
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
cin>>n>>s;
for(int i=0;i<26;i++)
cin>>mLen[i];
minCnt=INF;
maxLen=1;
Dfs(0,0);
cout<<tot<<endl<<maxLen<<endl<<minCnt<<endl;
return 0;
}
看到别人用dp,开始换思路,从数据规模上看也应该猜到大概是
的dp,两重循环,但是自己只能想到
的,还对着数据调了好久,可能数据不强,竟然让我擦着时限过了
dp思路:相邻项的数据关系
分成了两部分,第j项不和前面匹配 与 第j项和前面匹配
dp[i][j] = dp[i][j-1](第j项不和前面匹配) + { dp[i][k-1] | 从第k项到第j项可以匹配 }
dp[i][j]:从第i项到第j项分段方法总数,包括i,j
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define FOR(i,k,n) for(int i=k;i<n;i++)
#define FORR(i,k,n) for(int i=k;i<=n;i++)
#define scan(a) scanf("%d",&a)
#define scann(a,b) scanf("%d%d",&a,&b)
#define scannn(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define mst(a,n) memset(a,n,sizeof(a))
#define ll long long
#define N 1005
#define mod 1000000007
#define INF 0x3f3f3f3f
const double eps=1e-8;
const double pi=acos(-1.0);
int n;
char s[N];
int mLen[26];
ll tot[N][N];
int maxLen;
int minCnt[N][N];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
cin>>n>>s;
for(int i=0;i<26;i++)
cin>>mLen[i];
maxLen=1;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
minCnt[i][j]=N;
mst(tot,0);
for(int i=n-1;i>=0;i--)
{
for(int j=i;j<=n-1;j++)
{
//printf("*********[%d,%d]********\n",i,j);
if(i<j)
{
tot[i][j]=tot[i][j-1];
int k=j-1,tmp_max_len=mLen[s[j]-'a'];
while(j-k+1<=tmp_max_len&&j-k+1<=mLen[s[k]-'a']&&i<=k-1)
{
tot[i][j]=(tot[i][j]+tot[i][k-1])%mod;
tmp_max_len=min(tmp_max_len,mLen[s[k]-'a']);
maxLen=max(maxLen,j-k+1);
minCnt[i][j]=min(minCnt[i][j],minCnt[i][k-1]+1);
//printf("并入k=%d后,minCnt=%d\n",k,minCnt[i][j]);
k--;
}
if(i>k-1&&j-k+1<=tmp_max_len&&j-k+1<=mLen[s[k]-'a'])//k==i
{
tot[i][j]=(tot[i][j]+1)%mod;
maxLen=max(maxLen,j-k+1);
minCnt[i][j]=1;
//printf("并掉i,minCnt=%d\n",minCnt[i][j]);
}
if(minCnt[i][j]==N) minCnt[i][j]=minCnt[i][j-1]+1;//printf("不能吞并任何,minCnt=%d\n",minCnt[i][j]);
}
else //i==j
tot[i][j]=minCnt[i][j]=1;
}
}
cout<<tot[0][n-1]<<endl<<maxLen<<endl<<minCnt[0][n-1]<<endl;
return 0;
}
大神的
做法,发现我的想法饶了弯路,我的是"Z"型扫描线,大神的是"<"型扫描线,匹配的时候可以直接从前往后匹配啊!
cnt[i]:从i到末尾分段方法总数
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1005, mod = 1e9+7;
int cnt[maxn], mn[maxn];
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
int n;
string s;
cin >> n >> s;
int a[26];
for(int i = 0; i < 26; i++)
cin >> a[i];
int maxlen = 1;
cnt[n] = 1;//配合递推式赋初值
mn[n] = 0;//配合递推式赋初值
for(int i = n-1; i >= 0; i--){
int mx = maxn;
mn[i] = maxn;
for(int j = i; j < n; j++){
mx = min(mx, a[s[j]-'a']);
//cerr << i << " " << j << " " << mx << endl;
if(mx < j-i+1) break;
cnt[i] = (cnt[i] + cnt[j+1]) % mod;
mn[i] = min(mn[i], 1 + mn[j+1]);
maxlen = max(maxlen, j-i+1);
}
}
cout << cnt[0] << "\n" << maxlen << "\n" << mn[0];
return 0;
}