组合数学学习之错位排列(持续更新)

本文介绍了全错位排列的三种解法:递推法、容斥原理和母函数。通过详细阐述每种方法的思路,结合实例和公式推导,深入理解错位排列问题。并提供了相关练习题和参考资料。
摘要由CSDN通过智能技术生成

全错位排列有三种解法,嘿嘿,那我就要一探究竟!

一、递推

        假设排列是1,2,3,4···n个数,Dn表示n个数的全错位排列的方法数。D1 = 0、D2 = 1

        那么对于第1个位置,假设由k去占。现在就有两种情况:

       1)、1和k互换了位置,k占1的位置,1占k的位置:那么此时相当于1和k位置确定,只需要讨论Dn-2的排列数。

       2)、1没有占k的位置,而是占了其它的位置:那么此时相当于只确定了k的位置,需要讨论Dn-1的排列数。

       但是有(n-1)个数需要讨论,所以可以得到下面的递推式:

       

       然后等价变形为(两边同时处以n!,然后再移项整理):

       

       然后展开递推式就可以得到错位排序的通项公式了。  

二、容斥原理

        记N(a1,a2,···,an)为n个数都没排错的方法数,那么对于以下情况,可以得到一些结论:

        a1排对,记N(a1)=(n-1)!。因为a1已经排对了,那

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值