题目:
描述
当长度为L的一根细木棍的温度升高n度,它会膨胀到新的长度L’=(1+n*C)*L,其中C是热膨胀系数。
当一根细木棍被嵌在两堵墙之间被加热,它将膨胀形成弓形的弧,而这个弓形的弦恰好是未加热前木棍的原始位置。
你的任务是计算木棍中心的偏移距离。
输入
三个非负实数:木棍初始长度(单位:毫米),温度变化(单位:度),以及材料的热膨胀系数。
保证木棍不会膨胀到超过原始长度的1.5倍。
输出
木棍中心的偏移距离(单位:毫米),保留到小数点后第三位。
样例输入
1000 100 0.0001
样例输出
61.329
ps(当时想到是数学问题 认为可以直接算出来 当然失败了 菜~)
题目是求 偏移的距离 x ,已知量有 l , n, c, 可以求出 L2 (弧的长度) 很显然膨胀后是在一个圆弧中,那么未知量就是半径R,和角度zita(我用的是圆心角的一半,也可以是整个圆形角),可以算出L2的角度表达式,再结合半径和弧长的关系得到R关于角度的关系,二分逼近 角度的值 再通过角度 得到 x。
#include <bits/stdc++.h>
using namespace std;
double L, n, c, L2;
bool check(double x)
{
double R = L / (2 * sin(x));
double Temp = R * 2 * x; // 计算逼近的弧长
return Temp >= L2;
}
int main() {
cin >> L >> n >> c;
L2 = (1 + n * c) * L;
double l = 0.0;
double r = acos(-1.0) / 2; // pi/2
// 使用二分法逼近合适的角度
while (r - l >= 1e-8) {
double mid = (l + r) / 2;
if (check(mid)) r = mid;
else l = mid;
}
double R = L / (2 * sin(r)); // 半径
double x = R * (1 - cos(r)); // 中心偏移距离
cout << fixed << setprecision(3) << x << endl;
return 0;
}
如果有帮助的话 点个赞把 qwq~
END