膨胀的木棍 二分

题目:

6311:膨胀的木棍 (tzcoder.cn)

描述

当长度为L的一根细木棍的温度升高n度,它会膨胀到新的长度L’=(1+n*C)*L,其中C是热膨胀系数。

当一根细木棍被嵌在两堵墙之间被加热,它将膨胀形成弓形的弧,而这个弓形的弦恰好是未加热前木棍的原始位置。

你的任务是计算木棍中心的偏移距离。

输入

三个非负实数:木棍初始长度(单位:毫米),温度变化(单位:度),以及材料的热膨胀系数。

保证木棍不会膨胀到超过原始长度的1.5倍。

输出

木棍中心的偏移距离(单位:毫米),保留到小数点后第三位。

样例输入

1000 100 0.0001

样例输出

61.329

ps(当时想到是数学问题 认为可以直接算出来 当然失败了 菜~)

题目是求 偏移的距离 x ,已知量有 l , n, c, 可以求出 L2 (弧的长度) 很显然膨胀后是在一个圆弧中,那么未知量就是半径R,和角度zita(我用的是圆心角的一半,也可以是整个圆形角),可以算出L2的角度表达式,再结合半径和弧长的关系得到R关于角度的关系,二分逼近 角度的值 再通过角度 得到 x。

#include <bits/stdc++.h>
using namespace std;

double L, n, c, L2;


bool check(double x) 
{
    double R = L / (2 * sin(x));
    double Temp = R * 2 * x; // 计算逼近的弧长
    return Temp >= L2;
}

int main() {
    cin >> L >> n >> c;
    L2 = (1 + n * c) * L;
    double l = 0.0;
    double r = acos(-1.0) / 2; // pi/2

    // 使用二分法逼近合适的角度
    while (r - l >= 1e-8) {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }

    
    double R = L / (2 * sin(r)); // 半径
    double x = R * (1 - cos(r)); // 中心偏移距离

    cout << fixed << setprecision(3) << x << endl;
    return 0;
}

如果有帮助的话 点个赞把 qwq~

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值