Leetcode 53.Maximum Subarray

本题较为简单, 提供两个思路

思路一 : 系统化的思路, 最初的结果肯定是第一个元素 A[0], 假设我们解决了 A[1, .. , i - 1] 的问题, 如何扩展到 A[1, .. , i] 呢 ?

就是当前最大值与 A[i] 的和、A[i] 两者间的较大值.

class Solution {
    public int maxSubArray(int[] nums) {
        int MaxSoFar = nums[0], MaxEndingHere = nums[0];
        for(int i = 1; i < nums.length; ++i) {
            MaxEndingHere = Math.max(MaxEndingHere + nums[i], nums[i]);
            MaxSoFar = Math.max(MaxSoFar, MaxEndingHere);
        }
        return MaxSoFar;
    }
}

  思路二 : 记录一下当前的累加和, 一旦出现小于 0, 那么不管下一个数为正或者负, 都比加上这个负数的累加和要大. 所以将累加和清零.

class Solution {
    public int maxSubArray(int[] nums) {
        int result = Integer.MIN_VALUE;
        int sum = 0;
        for(int i = 0; i < nums.length; ++i) {
            sum += nums[i];
            if(sum > result)
                result = sum;
            if(sum < 0)
                sum = 0;
        }
        return result;
    }
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值