文章目录
| 三大组件 | 启动进程 | 备注说明 |
|---|---|---|
| HDFS | NameNode作为主节点, DataNode作为从节点, SecondaryNameNode主节点辅助 | 分布式文件系统 |
| MapReduce | MapReduce程序运行在YARN容器内,无需启动任何进程 | 分布式数据计算 |
| YARN | ResourceManager作为集群资源管理者, NodeManager作为单机资源管理者, ProxyServer代理服务器提供安全性, JobHistoryServer记录历史信息和日志 | 分布式资源调度 |
一、分布式计算组件-MapReduce
1、简介
分布式计算: 多台服务器协同工作,共同完成一个计算任务
分布式计算常见的2种工作模式:
- 分散->汇总 (MapReduce就是这种模式)
- 中心调度->步骤执行 (大数据体系的Spark、Flink等是这种模式)
MapReduce 即Hadoop内提供的进行分布式计算的组件, MapReduce是“分散->汇总”模式的分布式计算框架,可供开发人员开发相关程序进行分布式数据计算。
2、MapReduce的主要编程接口
map接口,主要提供“分散”功能,由服务器分布式处理数据
reduce接口,主要提供“汇总”功能,进行数据汇总统计得到结果
MapReduce可供Java、Python等语言开发计算程序
3、MapReduce的运行机制
将要执行的需求,分解为多个Map Task和Reduce Task
将Map Task 和 Reduce Task分配到对应的服务器去执行
4、MapReduce框架的运行配置
在 $HADOOP_HOME/etc/hadoop 文件夹内,需要修改两个文件
mapred-env.sh文件
方式1: 执行如下命令添加配置信息
export JAVA_HOME=/opt/jdk
export HADOOP_JOB_HISTORYSERVER_HEAPSIZE=1000
export HADOOP_MAPRED_ROOT_LOGGER=INFO,RFA
方式2: 直接执行如下命令追加配置信息即可
sh -c "echo 'export JAVA_HOME=/opt/jdk' >> /opt/hadoop/etc/hadoop/mapred-env.sh"
sh -c "echo 'export HADOOP_JOB_HISTORYSERVER_HEAPSIZE=1000' >> /opt/hadoop/etc/hadoop/mapred-env.sh"
sh -c "echo 'export HADOOP_MAPRED_ROOT_LOGGER=INFO,RFA' >> /opt/hadoop/etc/hadoop/mapred-env.sh"
mapred-site.xml文件
vim /opt/hadoop/etc/hadoop/mapred-site.xml
添加如下配置
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
<description>MapReduce运行框架设置为yarn</description>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>hadoop-1:10020</value>
<description>历史服务器通讯端口为hadoop-1:10020</description>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>hadoop-1:19888</value>
<description>历史服务器web端口为hadoop-1的19888</description>
</property>
<property>
<name>mapreduce.jobhistory.intermediate-done-dir</name>
<value>/data/mr-history/tmp</value>
<description>历史信息在HDFS的记录临时路径</description>
</property>
<property>
<name>mapreduce.jobhistory.done-dir</name>
<value>/data/mr-history/done</value>
<description>历史信息在HDFS的记录路径</description>
</property>
<property>
<name>yarn.app.mapreduce.am.env</name>
<value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
<description>MapReduce HOME 设置为 HADOOP_HOME</description>
</property>
<property>
<name>mapreduce.map.env</name>
<value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
<description>MapReduce HOME 设置为 HADOOP_HOME</description>
</property>
<property>
<name>mapreduce.reduce.env</name>
<value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
<description>MapReduce HOME 设置为 HADOOP_HOME</description>
</property>
至此MapReduce已配置完成
二、分布式调度组件-YARN
1、简介
YARN是Hadoop的分布式调度组件 , 管控整个集群的资源(内存、CPU等)进行调度。
为什么要调度?
因为资源统一管控进行分配可以提高资源利用率
程序如何在YARN内运行?
程序向YARN申请所需资源, YARN为程序分配所需资源供程序使用
MapReduce和YARN的关系?
YARN用来调度资源给MapReduce分配和管理运行资源, 所以MapReduce需要YARN才能执行(普遍情况)
2、YARN架构
YARN主从架构,有两个角色
ResourceManager 主(Master)角色:
整个集群的资源调度者, 负责协调调度各个程序所需的资源。
NodeManager 从(Slave) 角色:
单个服务器的资源调度者,负责调度单个服务器上的资源提供给应用程序使用。

3、辅助角色
YARN的架构中除了核心角色,还可以搭配2个辅助角色使得YARN集群运行更加稳定
- 代理服务器(ProxyServer):Web Application Proxy Web应用程序代理
默认情况下,它将作为资源管理器(RM)的一部分运行,但是可以配置为在独立模式下运行。使用代理的原因是为了减少通过 YARN 进行基于网络的攻击的可能性。因为YARN在运行时会提供一个WEB UI站点(同HDFS的WEB UI站点一样)可供用户在浏览器内查看YARN的运行信息, 对外提供WEB 站点会有安全性问题, 而代理服务器的功能就是最大限度保障对WEB UI的访问是安全的。
比如: 警告用户正在访问一个不受信任的站点 剥离用户访问的Cookie等 开启代理服务器,可以提高YARN在开放网络中的安全性 (但不是绝对安全只能是辅助提高一些)
- 历史服务器(JobHistoryServer): 应用程序历史信息记录服务
记录历史运行的程序的信息以及产生的日志并提供WEB UI站点供用户使用浏览器查看。
4、YARN运行配置文件
在 $HADOOP_HOME/etc/hadoop 文件夹内,需要修改两个文件
yarn-env.sh文件
vim /opt/hadoop/etc/hadoop/yarn-env.sh
添加如下4行环境变量内容
export JAVA_HOME=/opt/jdk
export HADOOP_HOME=/opt/hadoop
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HADOOP_LOG_DIR=$HADOOP_HOME/logs
yarn-site.xml文件
vim /opt/hadoop/etc/hadoop/yarn-site.xml
添加如下配置
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop-1</value>
<description>resourcemanager设置在hadoop-1节点</description>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/data/nm-local</value>
<description>nodemanager中间数据本地存储路径</description>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/data/nm-log</value>
<description>nodemanager数据本地存储路径</description>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
<description>为mapreduce程序开启shuffle服务</description>
</property>
<property>
<name>yarn.log.server.url</name>
<value>http://hadoop-1:19888/jobhistory/logs</value>
<description>历史服务器URL</description>
</property>
<property>
<name>yarn.web-proxy.address</name>
<value>hadoop-1:8089</value>
<description>代理服务器主机和端口</description>
</property>
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
<description>开启日志聚合</description>
</property>
<property>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>/tmp/logs</value>
<description>程序日志和HDFS的存储路径</description>
</property>
<property>
<name>yarn.resourcemanager.scheduler</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
<description>选择公平调度器</description>
</property>
分发配置到其他节点
cd /opt/hadoop/etc/hadoop
scp mapred-env.sh mapred-site.xml yarn-env.sh yarn-site.xml hadoop-2:`pwd`/
scp mapred-env.sh mapred-site.xml yarn-env.sh yarn-site.xml hadoop-3:`pwd`/

三、实操验证
1、启停命令验证
一键启动YARN集群: $HADOOP_HOME/sbin/start-yarn.sh
一键停止YARN集群: $HADOOP_HOME/sbin/stop-yarn.sh
单独启动或停止进程
$HADOOP_HOME/bin/yarn --daemon start|stop resourcemanager|nodemanager|proxyserver
历史服务器启动和停止
$HADOOP_HOME/bin/mapred --daemon start|stop historyserver/
示例:
一键启动hdfs
start-dfs.sh
一键启动yarn
start-yarn.sh
单独启动历史服务器
mapred --daemon start historyserver

完成yarn的集群部署,访问 http://hadoop-1:8088成功

2、执行程序验证
Hadoop官方内置了一些预置的MapReduce程序代码, 只需要通过命令即可使用。
wordcount:单词计数程序。 统计指定文件内各个单词出现的次数
pi:求圆周率 通过蒙特卡罗算法(统计模拟法)求圆周率
内置的示例MapReduce程序代码,都在: $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.2.4.jar 这个文件内。可以通过 hadoop jar 命令来运行它,提交MapReduce程序到YARN中。
语法: hadoop jar 程序文件 java类名 [程序参数] ... [程序参数]
步骤:
①本地创建一个 /home/hadoop/hello.txt 文件,文件内容为
test1 test2 test3 test1 test2 test3 test1 test2 test3 test1 test2 test3
test1 test2 test3 test4 hdfs hadoop hdfs hadoop hdfs
②上传本地文件到hdfs
hadoop fs -mkdir -p /input/wordcount
hadoop fs -put -f /home/hadoop/hello.txt /input/wordcount/hello.txt
③执行如下命令提交示例MapReduce程序WordCount到YARN中执行计算
hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.2.4.jar wordcount hdfs://hadoop-1:8020/input/wordcount/ hdfs://hadoop-1:8020/output/wordcount

④查看输出文件
hadoop fs -ls /output/wordcount
hadoop fs -cat /output/wordcount/part-r-00000
_SUCCESS文件是标记文件,表示运行成功,本身是空文件
part-r-00000,是结果文件,结果存储在以part开头的文件中

执行完成后,可以借助历史服务器查看到程序的历史运行信息
http://hadoop-1:19888/jobhistory/job/job_1730731877561_0001

2万+

被折叠的 条评论
为什么被折叠?



