Hadoop-007-MapReduce&YARN的配置部署

三大组件启动进程备注说明
HDFSNameNode作为主节点, DataNode作为从节点, SecondaryNameNode主节点辅助分布式文件系统
MapReduceMapReduce程序运行在YARN容器内,无需启动任何进程分布式数据计算
YARNResourceManager作为集群资源管理者, NodeManager作为单机资源管理者, ProxyServer代理服务器提供安全性, JobHistoryServer记录历史信息和日志分布式资源调度

一、分布式计算组件-MapReduce

1、简介

分布式计算: 多台服务器协同工作,共同完成一个计算任务

分布式计算常见的2种工作模式:

  1. 分散->汇总 (MapReduce就是这种模式)
  2. 中心调度->步骤执行 (大数据体系的Spark、Flink等是这种模式)

MapReduce 即Hadoop内提供的进行分布式计算的组件, MapReduce是“分散->汇总”模式的分布式计算框架,可供开发人员开发相关程序进行分布式数据计算。

2、MapReduce的主要编程接口

map接口,主要提供“分散”功能,由服务器分布式处理数据
reduce接口,主要提供“汇总”功能,进行数据汇总统计得到结果
MapReduce可供Java、Python等语言开发计算程序

3、MapReduce的运行机制

将要执行的需求,分解为多个Map Task和Reduce Task
将Map Task 和 Reduce Task分配到对应的服务器去执行

4、MapReduce框架的运行配置

在 $HADOOP_HOME/etc/hadoop 文件夹内,需要修改两个文件

mapred-env.sh文件

方式1: 执行如下命令添加配置信息
export JAVA_HOME=/opt/jdk
export HADOOP_JOB_HISTORYSERVER_HEAPSIZE=1000
export HADOOP_MAPRED_ROOT_LOGGER=INFO,RFA

方式2: 直接执行如下命令追加配置信息即可
sh -c "echo 'export JAVA_HOME=/opt/jdk' >> /opt/hadoop/etc/hadoop/mapred-env.sh"
sh -c "echo 'export HADOOP_JOB_HISTORYSERVER_HEAPSIZE=1000' >> /opt/hadoop/etc/hadoop/mapred-env.sh"
sh -c "echo 'export HADOOP_MAPRED_ROOT_LOGGER=INFO,RFA' >> /opt/hadoop/etc/hadoop/mapred-env.sh"

mapred-site.xml文件

vim /opt/hadoop/etc/hadoop/mapred-site.xml
添加如下配置
<property>
  <name>mapreduce.framework.name</name>
  <value>yarn</value>
  <description>MapReduce运行框架设置为yarn</description>
</property>

<property>
  <name>mapreduce.jobhistory.address</name>
  <value>hadoop-1:10020</value>
  <description>历史服务器通讯端口为hadoop-1:10020</description>
</property>

<property>
  <name>mapreduce.jobhistory.webapp.address</name>
  <value>hadoop-1:19888</value>
  <description>历史服务器web端口为hadoop-1的19888</description>
</property>

<property>
  <name>mapreduce.jobhistory.intermediate-done-dir</name>
  <value>/data/mr-history/tmp</value>
  <description>历史信息在HDFS的记录临时路径</description>
</property>

<property>
  <name>mapreduce.jobhistory.done-dir</name>
  <value>/data/mr-history/done</value>
  <description>历史信息在HDFS的记录路径</description>
</property>

<property>
  <name>yarn.app.mapreduce.am.env</name>
  <value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
  <description>MapReduce HOME 设置为 HADOOP_HOME</description>
</property>

<property>
  <name>mapreduce.map.env</name>
  <value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
  <description>MapReduce HOME 设置为 HADOOP_HOME</description>
</property>

<property>
  <name>mapreduce.reduce.env</name>
  <value>HADOOP_MAPRED_HOME=$HADOOP_HOME</value>
  <description>MapReduce HOME 设置为 HADOOP_HOME</description>
</property>

至此MapReduce已配置完成

二、分布式调度组件-YARN

1、简介

YARN是Hadoop的分布式调度组件 , 管控整个集群的资源(内存、CPU等)进行调度。

为什么要调度?

因为资源统一管控进行分配可以提高资源利用率

程序如何在YARN内运行?

程序向YARN申请所需资源, YARN为程序分配所需资源供程序使用

MapReduce和YARN的关系?

YARN用来调度资源给MapReduce分配和管理运行资源, 所以MapReduce需要YARN才能执行(普遍情况)

2、YARN架构

YARN主从架构,有两个角色

ResourceManager 主(Master)角色:
整个集群的资源调度者, 负责协调调度各个程序所需的资源。

NodeManager 从(Slave) 角色:
单个服务器的资源调度者,负责调度单个服务器上的资源提供给应用程序使用。

在这里插入图片描述

3、辅助角色

YARN的架构中除了核心角色,还可以搭配2个辅助角色使得YARN集群运行更加稳定

  1. 代理服务器(ProxyServer):Web Application Proxy Web应用程序代理
    默认情况下,它将作为资源管理器(RM)的一部分运行,但是可以配置为在独立模式下运行。使用代理的原因是为了减少通过 YARN 进行基于网络的攻击的可能性。因为YARN在运行时会提供一个WEB UI站点(同HDFS的WEB UI站点一样)可供用户在浏览器内查看YARN的运行信息, 对外提供WEB 站点会有安全性问题, 而代理服务器的功能就是最大限度保障对WEB UI的访问是安全的。
    比如: 警告用户正在访问一个不受信任的站点 剥离用户访问的Cookie等 开启代理服务器,可以提高YARN在开放网络中的安全性 (但不是绝对安全只能是辅助提高一些)
  1. 历史服务器(JobHistoryServer): 应用程序历史信息记录服务
    记录历史运行的程序的信息以及产生的日志并提供WEB UI站点供用户使用浏览器查看。

4、YARN运行配置文件

在 $HADOOP_HOME/etc/hadoop 文件夹内,需要修改两个文件

yarn-env.sh文件

vim /opt/hadoop/etc/hadoop/yarn-env.sh
添加如下4行环境变量内容
export JAVA_HOME=/opt/jdk
export HADOOP_HOME=/opt/hadoop
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HADOOP_LOG_DIR=$HADOOP_HOME/logs

yarn-site.xml文件

vim /opt/hadoop/etc/hadoop/yarn-site.xml

添加如下配置
<property>
  <name>yarn.resourcemanager.hostname</name>
  <value>hadoop-1</value>
  <description>resourcemanager设置在hadoop-1节点</description>
</property>

<property>
  <name>yarn.nodemanager.local-dirs</name>
  <value>/data/nm-local</value>
  <description>nodemanager中间数据本地存储路径</description>
</property>

<property>
  <name>yarn.nodemanager.log-dirs</name>
  <value>/data/nm-log</value>
  <description>nodemanager数据本地存储路径</description>
</property>

<property>
  <name>yarn.nodemanager.aux-services</name>
  <value>mapreduce_shuffle</value>
  <description>为mapreduce程序开启shuffle服务</description>
</property>

<property>
  <name>yarn.log.server.url</name>
  <value>http://hadoop-1:19888/jobhistory/logs</value>
  <description>历史服务器URL</description>
</property>

<property>
  <name>yarn.web-proxy.address</name>
  <value>hadoop-1:8089</value>
  <description>代理服务器主机和端口</description>
</property>

<property>
  <name>yarn.log-aggregation-enable</name>
  <value>true</value>
  <description>开启日志聚合</description>
</property>

<property>
  <name>yarn.nodemanager.remote-app-log-dir</name>
  <value>/tmp/logs</value>
  <description>程序日志和HDFS的存储路径</description>
</property>

<property>
  <name>yarn.resourcemanager.scheduler</name>
  <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
  <description>选择公平调度器</description>
</property>

分发配置到其他节点

cd /opt/hadoop/etc/hadoop
scp mapred-env.sh mapred-site.xml yarn-env.sh yarn-site.xml hadoop-2:`pwd`/
scp mapred-env.sh mapred-site.xml yarn-env.sh yarn-site.xml hadoop-3:`pwd`/

在这里插入图片描述

三、实操验证

1、启停命令验证

一键启动YARN集群: $HADOOP_HOME/sbin/start-yarn.sh
一键停止YARN集群: $HADOOP_HOME/sbin/stop-yarn.sh
单独启动或停止进程
$HADOOP_HOME/bin/yarn --daemon start|stop resourcemanager|nodemanager|proxyserver
历史服务器启动和停止
$HADOOP_HOME/bin/mapred --daemon start|stop historyserver/

示例: 

一键启动hdfs
start-dfs.sh

一键启动yarn
start-yarn.sh

单独启动历史服务器
mapred --daemon start historyserver

在这里插入图片描述
完成yarn的集群部署,访问 http://hadoop-1:8088成功
在这里插入图片描述

2、执行程序验证

Hadoop官方内置了一些预置的MapReduce程序代码, 只需要通过命令即可使用。

wordcount:单词计数程序。 统计指定文件内各个单词出现的次数
pi:求圆周率 通过蒙特卡罗算法(统计模拟法)求圆周率

内置的示例MapReduce程序代码,都在: $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.2.4.jar 这个文件内。可以通过 hadoop jar 命令来运行它,提交MapReduce程序到YARN中。

语法: hadoop jar 程序文件 java类名 [程序参数] ... [程序参数]

步骤:
①本地创建一个 /home/hadoop/hello.txt 文件,文件内容为

test1 test2 test3 test1 test2 test3 test1 test2 test3 test1 test2 test3
test1 test2 test3 test4 hdfs hadoop hdfs hadoop hdfs

②上传本地文件到hdfs

hadoop fs -mkdir -p  /input/wordcount
hadoop fs -put -f /home/hadoop/hello.txt /input/wordcount/hello.txt

③执行如下命令提交示例MapReduce程序WordCount到YARN中执行计算

hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-examples-3.2.4.jar wordcount hdfs://hadoop-1:8020/input/wordcount/ hdfs://hadoop-1:8020/output/wordcount

在这里插入图片描述
④查看输出文件

hadoop fs -ls /output/wordcount
hadoop fs -cat /output/wordcount/part-r-00000

_SUCCESS文件是标记文件,表示运行成功,本身是空文件
part-r-00000,是结果文件,结果存储在以part开头的文件中

在这里插入图片描述
执行完成后,可以借助历史服务器查看到程序的历史运行信息

http://hadoop-1:19888/jobhistory/job/job_1730731877561_0001

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Double@加贝

非常感谢家人们的打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值