这道题搜索的角度很有意思。
比较直白的想就是每个瓷砖都可以反或不反,2种选择。
这样的话,搜索的状态数时间太多,指数级增长,肯定T。
不妨这么想。
如果指定了第1横排的翻法。
那么如果第1横排存在黑色,也就是(1,x)为黑。
那么(2,x)就必须反转才能保证(1,x)为白,那么第2排的反转法也确定了。
如此类推,如果至最后一排都为全白,那么这是一种可以通过的翻法。
我们只需枚举第1横排的所有排法,接下去每1横排的排列方法就都随第1横排被确定了。
这样搜索,状态数大大减少了。
其实这种方法是不是和“解线性方程”时,
任意确定一个变元,来获得一组解很像呢?
这里面的门路就深了。然而本弱渣并不太懂。。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
using namespace std;
#define INF 0x3f3f3f3f
int M,N;
int mat[20][20];
int ans[20][20];
int tmp[20][20];
int anscnt;
int fin; //finish
int finm[20][20];
bool check()
{
anscnt=0;
for(int j=0;j<N;j++)
{
if(ans[0][j]==1)
{
anscnt++;
tmp[0][j]=(tmp[0][j]+1)%2;
if(j-1>=0) tmp[0][j-1]=(tmp[0][j-1]+1)%2;
if(j+1<N) tmp[0][j+1]=(tmp[0][j+1]+1)%2;
if(1<M) tmp[1][j]=(tmp[1][j]+1)%2;
}
}
//printf("ing anscnt=%d\n",anscnt);
for(int i=1;i<M;i++)
{
for(int j=0;j<N;j++)
{
if(tmp[i-1][j]==1)
{
ans[i][j]=1;
anscnt++;
//printf("i=%d j=%d anscnt=%d\n",i,j,anscnt);
tmp[i][j]=(tmp[i][j]+1)%2;
if(j-1>=0) tmp[i][j-1]=(tmp[i][j-1]+1)%2;
if(j+1<N) tmp[i][j+1]=(tmp[i][j+1]+1)%2;
if(i+1<M) tmp[i+1][j]=(tmp[i+1][j]+1)%2;
}
else ans[i][j]=0;
}
}
//printf("ing anscnt=%d\n",anscnt);
for(int j=0;j<N;j++)
if(tmp[M-1][j]==1) return false;
return true;
}
void solve(int now)
{
if(now<N)
{
ans[0][now]=0;
solve(now+1);
ans[0][now]=1;
solve(now+1);
return;
}
// for(int j=0;j<N;j++)
// printf("%d ",ans[0][j]);
// printf("\n");
for(int i=0;i<M;i++)
for(int j=0;j<N;j++)
tmp[i][j]=mat[i][j];
if(check())
{
//printf("nice! %d\n",anscnt);
if(anscnt<fin)
{
fin=anscnt;
for(int i=0;i<M;i++)
{
for(int j=0;j<N;j++)
{
finm[i][j]=ans[i][j];
//printf("%d ",finm[i][j]);
}
//printf("\n");
}
}
}
//system("pause");
}
int main()
{
while(~scanf("%d%d",&M,&N))
{
for(int i=0;i<M;i++)
{
for(int j=0;j<N;j++)
{
scanf("%d",&mat[i][j]);
}
}
fin=INF;
solve(0);
if(fin==INF)
printf("IMPOSSIBLE\n");
else
{
//printf("%d\n",fin);
for(int i=0;i<M;i++)
{
printf("%d",finm[i][0]);
for(int j=1;j<N;j++)
{
printf(" %d",finm[i][j]);
}
printf("\n");
}
}
}
return 0;
}