POJ 3279 搜索(反转)

这道题搜索的角度很有意思。

比较直白的想就是每个瓷砖都可以反或不反,2种选择。

这样的话,搜索的状态数时间太多,指数级增长,肯定T。


不妨这么想。

如果指定了第1横排的翻法。

那么如果第1横排存在黑色,也就是(1,x)为黑。

那么(2,x)就必须反转才能保证(1,x)为白,那么第2排的反转法也确定了。

如此类推,如果至最后一排都为全白,那么这是一种可以通过的翻法。


我们只需枚举第1横排的所有排法,接下去每1横排的排列方法就都随第1横排被确定了。

这样搜索,状态数大大减少了。


其实这种方法是不是和“解线性方程”时,

任意确定一个变元,来获得一组解很像呢?

这里面的门路就深了。然而本弱渣并不太懂。。


#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdlib>
using namespace std;
#define INF 0x3f3f3f3f
int M,N;
int mat[20][20];
int ans[20][20];
int tmp[20][20];

int anscnt;
int fin; //finish
int finm[20][20];

bool check()
{
    anscnt=0;
    for(int j=0;j<N;j++)
    {
        if(ans[0][j]==1)
        {
            anscnt++;
            tmp[0][j]=(tmp[0][j]+1)%2;
            if(j-1>=0) tmp[0][j-1]=(tmp[0][j-1]+1)%2;
            if(j+1<N) tmp[0][j+1]=(tmp[0][j+1]+1)%2;
            if(1<M) tmp[1][j]=(tmp[1][j]+1)%2;
        }
    }

    //printf("ing anscnt=%d\n",anscnt);
    for(int i=1;i<M;i++)
    {
        for(int j=0;j<N;j++)
        {
            if(tmp[i-1][j]==1)
            {
                ans[i][j]=1;
                anscnt++;
                //printf("i=%d j=%d anscnt=%d\n",i,j,anscnt);
                tmp[i][j]=(tmp[i][j]+1)%2;
                if(j-1>=0) tmp[i][j-1]=(tmp[i][j-1]+1)%2;
                if(j+1<N) tmp[i][j+1]=(tmp[i][j+1]+1)%2;
                if(i+1<M) tmp[i+1][j]=(tmp[i+1][j]+1)%2;
            }
            else ans[i][j]=0;
        }
    }
    //printf("ing anscnt=%d\n",anscnt);
    for(int j=0;j<N;j++)
        if(tmp[M-1][j]==1) return false;

    return true;
}

void solve(int now)
{
    if(now<N)
    {
        ans[0][now]=0;
        solve(now+1);
        ans[0][now]=1;
        solve(now+1);
        return;
    }

//    for(int j=0;j<N;j++)
//        printf("%d ",ans[0][j]);
//    printf("\n");


    for(int i=0;i<M;i++)
        for(int j=0;j<N;j++)
            tmp[i][j]=mat[i][j];

    if(check())
    {
        //printf("nice! %d\n",anscnt);
        if(anscnt<fin)
        {
            fin=anscnt;
            for(int i=0;i<M;i++)
            {
                for(int j=0;j<N;j++)
                {
                    finm[i][j]=ans[i][j];
                    //printf("%d ",finm[i][j]);
                }
                //printf("\n");
            }
        }
    }
    //system("pause");
}



int main()
{
    while(~scanf("%d%d",&M,&N))
    {
        for(int i=0;i<M;i++)
        {
            for(int j=0;j<N;j++)
            {
                scanf("%d",&mat[i][j]);
            }
        }

        fin=INF;
        solve(0);

        if(fin==INF)
            printf("IMPOSSIBLE\n");
        else
        {
            //printf("%d\n",fin);
            for(int i=0;i<M;i++)
            {
                printf("%d",finm[i][0]);
                for(int j=1;j<N;j++)
                {
                    printf(" %d",finm[i][j]);
                }
                printf("\n");
            }
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值