方差分析(ANOVA)简记

基本概念

方差分析(Analysis of Variance,简称ANOVA),是一种对多个水平或多组样本之间期望的差异进行显著性检验的方法。

对于两组样本,如 X 1 , X 2 , … , X n 1 X_{1}, X_{2}, \ldots, X_{n_1} X1,X2,,Xn1为来自正态总体 X ∼ N ( μ 1 , σ 2 ) X \sim N(\mu_1, \sigma^2) XN(μ1,σ2)的一个样本, Y 1 , Y 2 , … , Y n 2 Y_{1}, Y_{2}, \ldots, Y_{n_2} Y1,Y2,,Yn2为来自正态总体 Y ∼ N ( μ 2 , σ 2 ) Y \sim N(\mu_2, \sigma^2) YN(μ2,σ2)的一个样本,往往可以使用t检验方法检验两个总体均值的差异是否显著。但如果有 s ( s ≥ 2 ) s(s \ge 2) s(s2)组样本,或某个要检验的随机变量X受到某种因素A的影响,因素A有s个水平 A 1 , A 2 , … , A s A_1,A_2,\ldots,A_s A1,A2,,As,随机变量X在各组/各水平下的均值分别为 μ 1 , μ 2 , … , μ s \mu_1,\mu_2,\ldots,\mu_s μ1,μ2,,μs。若想要检验随机变量X是否受到因素A的影响,即检验这s组样本之间的均值是否有显著差异,即检验假设 μ 1 = μ 2 = … = μ s \mu_1 = \mu_2 = \ldots = \mu_s μ1=μ2==μs,可以尝试进行 C s 2 C_s^2 Cs2次成对t检验,但这样做的复杂度显然较高。因此常常使用方差分析的方法来进行这种类型的显著性检验。

单因素试验的方差分析

在此先简单记录单因素试验的方差分析,即仅仅考察某个单一因素对随机变量的影响。

前提和假设

之后的讨论均基于如下前提和假设:

有一种因素A对随机变量X有一定影响,因素A有s个水平,假设各个水平下随机变量X的总体均服从正态分布,且在各个水平下的方差相等,均为 σ 2 \sigma^2 σ2。在A的s个水平下分别进行 n j ( j = 1 , 2 , ⋯   , s ) n_{j}(j=1,2,\cdots,s) nj(j1,2,,s)次独立试验。试验结果如下:

A 1 A_1 A1 A 2 A_2 A2 ⋯ \cdots A s A_s As
X 11 X_{11} X11 X 12 X_{12} X12 ⋯ \cdots X 1 s X_{1s} X1s
X 21 X_{21} X21 X 22 X_{22} X22 ⋯ \cdots X 2 s X_{2s} X2s
⋮ \vdots ⋮ \vdots ⋮ \vdots ⋮ \vdots
X n 1 1 X_{n_{1}1} Xn11 X n 2 2 X_{n_{2}2} Xn22 ⋯ \cdots X n s s X_{n_{s}s} Xnss
样本总和 T ⋅ 1 T_{\cdot1} T1 T ⋅ 2 T_{\cdot2} T2 ⋯ \cdots T ⋅ s T_{\cdot s} Ts
样本均值 X ⋅ 1 ‾ \overline{X_{\cdot1}} X1 X ⋅ 2 ‾ \overline{X_{\cdot2}} X2 ⋯ \cdots X ⋅ s ‾ \overline{X_{\cdot s}} Xs
样本方差 S 1 2 S_1^2 S12 S 2 2 S_2^2 S22 ⋯ \cdots S s 2 S_s^2 Ss2
总体均值 μ 1 \mu_1 μ1 μ 2 \mu_2 μ2 ⋯ \cdots μ s \mu_s μs
  • 注意每个水平下的实验次数 n j n_{j} nj可以不一样,故表格不一定是正方形。总共的实验次数 n = n 1 + n 2 + ⋯ + n s n = n_1 + n_2 + \cdots + n_s n=n1+n2++ns
  • 样本总和 T ⋅ j = ∑ i = 1 n j X i j T_{\cdot j} = \sum_{i=1}^{n_{j}} X_{i j} Tj=i=1njXij,即第j个水平/第j组样本(第j列)的加和;
  • 样本均值 X ⋅ j ‾ = 1 n j T ⋅ j = 1 n j ∑ i = 1 n j X i j \overline{X_{\cdot j}} = \frac{1}{n_j}T_{\cdot j} = \frac{1}{n_j}\sum_{i=1}^{n_{j}} X_{i j} Xj=nj1Tj=nj1i=1njXij,即第j个水平/第j组样本(第j列)的样本均值;
  • 样本方差 S j 2 = 1 n j − 1 ∑ i = 1 n j ( X i j − X ⋅ j ‾ ) 2 S_j^2 =\frac{1}{n_j-1} \sum_{i=1}^{n_{j}} (X_{ij} - \overline{X_{\cdot j}})^2 Sj2=nj11i=1nj(XijXj)2,即第j个水平/第j组样本(第j列)的样本方差;
  • 因素A有s个水平,假设各个水平下随机变量X的总体均服从正态分布,且各个水平下的方差相等,用数学语言描述即为:各个水平 A j ( j = 1 , 2 , ⋯   , s ) A_j (j=1,2,\cdots,s) Aj(j=1,2,,s)下的样本(即各列数据) X 1 j , X 2 j , ⋯   , X n j j X_{1j},X_{2j},\cdots,X_{n_j j} X1j,X2j,,Xnjj来自具有相同方差的正态总体 N ( μ j , σ 2 ) N(\mu_j, \sigma^2) N(μj,σ2),总体均值 μ j ( j = 1 , 2 , ⋯   , s ) \mu_j (j=1,2,\cdots,s) μj(j=1,2,,s)则表示各个水平(各组)的总体均值。

基本思路

要检验A这一因素对随机变量X没有任何影响,则检验A因素在s个不同水平下时,随机变量X的期望差异不显著,即零假设为: H 0 : μ 1 = μ 2 = … = μ s H_0: \mu_1 = \mu_2 = \ldots = \mu_s H0:μ1=μ2==μs。为验证该假设建模:

定义总平均为各水平总体均值的算术平均数: μ = 1 n ∑ j = 1 n j n j μ j \mu = \frac{1}{n}\sum_{j=1}^{n_{j}} n_j\mu_j μ=n1j=1njnjμj,即在不考虑因素A时随机变量X的总体平均。相应地,数据的总平均 X ‾ = 1 n ∑ j = 1 n j T ⋅ j = 1 n ∑ j = 1 s ∑ i = 1 n j X i j \overline{X} = \frac{1}{n}\sum_{j=1}^{n_{j}} T_{\cdot j} = \frac{1}{n}\sum_{j=1}^{s}\sum_{i=1}^{n_{j}} X_{ij} X=n1j=1njTj=n1j=1si=1njXij。根据各个水平下的总体方差均为 σ 2 \sigma^2 σ2的假设,则随机变量X的总体方差自然也就是 σ 2 \sigma^2 σ2。结合中心极限定理,则有:

X ‾ ∼ N ( μ , σ 2 n ) \overline{X} \sim N(\mu, \frac{\sigma^2}{n}) XN(μ,nσ2)

因素A在不同水平下可能会对总平均有不同影响,再定义水平 A j A_j Aj效应为: δ j = μ j − μ \delta_j = \mu_j - \mu δj=μjμ,即该水平下的均值与总平均的差异(体现了因素A在该水平上导致的均值的“位移”)。根据定义,有 ∑ j = 1 s n j δ j = 0 \sum_{j=1}^{s} n_{j} \delta_{j} = 0 j=1snjδj=0

在A的某个水平下进行试验,每次试验的结果则可以表示为总平均 μ \mu μ、该水平下的效应 δ j \delta_j δj与一个随机误差 ϵ i j \epsilon_{ij} ϵij的和。即:

X i j = μ j + ϵ i j = μ + δ j + ϵ i j X_{ij} = \mu_j + \epsilon_{ij} = \mu + \delta_j + \epsilon_{ij} Xij=μj+ϵij=μ+δj+ϵij

往往认为随机误差 ϵ i j \epsilon_{ij} ϵij为每次试验随机产生的,故互相独立且均服从正态分布 N ( 0 , σ 2 ) N(0, \sigma^2) N(0,σ2),也就是该随机误差导致了组内数据的抖动,产生了总体方差 σ 2 \sigma^2 σ2

差异分解

引入总变差 S T S_T ST,即所有数据与数据总平均之间的差异之和:

S T = ∑ j = 1 s ∑ i = 1 n j ( X i j − X ‾ ) 2 S_T = \sum_{j=1}^{s}\sum_{i=1}^{n_{j}} (X_{ij} - \overline{X})^2 ST=j=1si=1nj(XijX)2

再定义误差平方和 S E S_E SE效应平方和 S A S_A SA

S E = ∑ j = 1 s ∑ i = 1 n j ( X i j − X ⋅ j ‾ ) 2 = ∑ j = 1 s ( n j − 1 ) S j 2 S_E = \sum_{j=1}^{s}\sum_{i=1}^{n_{j}} (X_{ij} - \overline{X_{\cdot j}})^2 = \sum_{j=1}^{s}(n_j - 1)S_j^2 SE=j=1si=1nj(XijXj)2=j=1s(nj1)Sj2
S A = ∑ j = 1 s n j ( X ⋅ j ‾ − X ‾ ) 2 = ∑ j = 1 s n j X ⋅ j ‾ 2 − n X ‾ 2 S_A = \sum_{j=1}^{s} n_j(\overline{X_{\cdot j}} - \overline{X})^2 = \sum_{j=1}^{s} n_j \overline{X_{\cdot j}}^2 - n\overline{X}^2 SA=j=1snj(XjX)2=j=1snjXj2nX2

误差平方和体现的是水平内差异(即组内方差)的和,该部分差异仅由随机误差引起。效应平方和体现的是水平间差异(组间差异)的和,该部分差异则由随机误差以及因素A不同水平下的绝对效应共同引起。基于如上定义,可以推导出(详细推导过程省略):

S T = S E + S A S_T = S_E + S_A ST=SE+SA

图像理解

下面作图辅助对上述各种概念的理解:
图像理解ANOVA
其中各水平/各组数据通过不同颜色的点表示,不同水平的数据所在的区域大小体现了组内方差;各区域的几何中心点即为该组数据的样本均值 X ⋅ j ‾ \overline{X_{\cdot j}} Xj。所有数据所在的区域大小体现了总变差 S T S_T ST;整体区域的几何中心即为总平均 μ \mu μ。局部区域的几何中心与整体区域的几何中心之间的距离就体现了对应水平的效应 δ j \delta_j δj

差异的统计学特征

先单独看各水平下的数据,即各列数据。根据各个水平下的总体服从等方差正态分布 N ( μ j , σ 2 ) N(\mu_j, \sigma^2) N(μj,σ2)的假设,有

( n j − 1 ) S j 2 σ 2 = ( n j − 1 ) ∑ i = 1 n j ( X i j − X ⋅ j ‾ ) 2 σ 2 ∼ χ 2 ( n j − 1 ) \frac{(n_j - 1)S_j^2}{\sigma^2} = \frac{(n_j - 1)\sum_{i=1}^{n_{j}} (X_{ij} - \overline{X_{\cdot j}})^2}{\sigma^2} \sim \chi^2(n_j - 1) σ2(nj1)Sj2=σ2(nj1)i=1nj(XijXj)2χ2(nj1)

结合 χ 2 \chi^2 χ2分布的可加性,将各列相加即得:

∑ j = 1 s ( n j − 1 ) S j 2 σ 2 = S E σ 2 ∼ χ 2 ( n − s ) \frac{\sum_{j=1}^{s}(n_j - 1)S_j^2}{\sigma^2} = \frac{S_E}{\sigma^2} \sim \chi^2(n - s) σ2j=1s(nj1)Sj2=σ2SEχ2(ns)

进而有 E ( S E ) = ( n − s ) σ 2 E(S_E)=(n-s)\sigma^2 E(SE)=(ns)σ2,即 S E n − s \frac{S_E}{n-s} nsSE就是总体方差 σ 2 \sigma^2 σ2的无偏估计。这样也再次证明了误差平方和 S E S_E SE为组内方差的和,仅由随机误差引起。

再看不同水平之间的数据。对于效应平方和,可以推导出如下关系(详细推导过程省略):

E ( S A ) = ( s − 1 ) σ 2 + ∑ j = 1 s n j δ j 2 E(S_A) = (s-1)\sigma^2 + \sum_{j=1}^{s}n_j \delta_j^2 E(SA)=(s1)σ2+j=1snjδj2

这也详细说明了效应平方和 S A S_A SA随机误差(第一部分)以及因素A不同水平下的绝对效应(第二部分)共同引起。

检验统计量

此时就可以考虑若零假设成立,即因素A在不同水平下随机变量X的期望差异不显著,也就是说因素A的不同水平的绝对效应的和(即上式中第二部分)为0。因此有:

E ( S A ) = ( s − 1 ) σ 2    ; S A σ 2 ∼ χ 2 ( s − 1 ) E(S_A) = (s-1)\sigma^2 \; ; \qquad \frac{S_A}{\sigma^2} \sim \chi^2(s - 1) E(SA)=(s1)σ2;σ2SAχ2(s1)

构建统计量:

F = S A / ( s − 1 ) S E / ( n − s ) ∼ F ( s − 1 , n − s ) F = \frac{S_A / (s-1)}{S_E / (n-s)} \sim F(s-1, n-s) F=SE/(ns)SA/(s1)F(s1,ns)

若零假设成立,则 S E n − s \frac{S_E}{n-s} nsSE S A s − 1 \frac{S_A}{s-1} s1SA均为总体方差 σ 2 \sigma^2 σ2的无偏估计,即上述统计量不得过大。若上述检验量过大(具体值由显著性水平 α \alpha α决定),则说明效应平方和 S A S_A SA比误差平方和 S E S_E SE大,也就是说因素A的不同水平的绝对效应之和较大,进而可以认为因素A会影响随机变量X的均值。

一句话总结方差分析就是看组内差异和组间差异是否大致相同,进而推断组间均值是否一致。

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
双向方差分析(Two-Way ANOVA)是一种统计方法,用于评估两个或更多因素对因变量的影响是否显著。它可以帮助我们确定两个或多个分类变量如何相互作用以及它们对因变量的影响。 双向方差分析的分析过程如下: 1. 首先,我们将数据分成不同的组,每个组都由两个或多个因素的不同水平组成。 2. 然后,我们计算每个组的平均值,并计算总体平均值。 3. 接下来,我们计算组内平方和(Within-group Sum of Squares)和组间平方和(Between-group Sum of Squares)。 4. 通过计算组内均方(Mean Square Within-groups)和组间均方(Mean Square Between-groups),我们可以计算F统计量。 5. 最后,我们使用F统计量和自由度来进行假设检验,以确定因素之间是否存在显著差异。 如果双向方差分析的交互项(interaction term)是显著的,那么最常见的分析方法是分别评估每个因素的影响,使用一元方差分析(One-Way ANOVA)。 下面是一个示例代码,演示如何使用Python中的statsmodels库进行双向方差分析: ```python import pandas as pd import statsmodels.api as sm from statsmodels.formula.api import ols # 创建一个包含因变量和两个因素的数据框 data = {'value': [10, 15, 12, 18, 20, 25, 22, 28], 'factor1': ['A', 'A', 'A', 'A', 'B', 'B', 'B', 'B'], 'factor2': ['X', 'Y', 'X', 'Y', 'X', 'Y', 'X', 'Y']} df = pd.DataFrame(data) # 使用公式定义模型 model = ols('value ~ factor1 + factor2 + factor1:factor2', data=df).fit() # 执行双向方差分析 anova_table = sm.stats.anova_lm(model, typ=2) print(anova_table) ``` 这段代码中,我们使用了pandas库创建了一个包含因变量和两个因素的数据框。然后,使用statsmodels库中的ols函数定义了一个模型,其中包括因变量和两个因素以及它们的交互项。最后,使用statsmodels库中的anova_lm函数执行了双向方差分析,并打印了结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值