343. 整数拆分
这道题主要要考虑到拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的,所以遇到较大的加数就需要分解成较小的加数,而不用动较小的加数,而且这样也不用考虑超过本身一半的加数,因为这数肯定是相对较大的加数了,一定不会分成更加均匀的几个加数。所以递推公式就是比较 将某加数分解后与另一加数的乘积(也就是dp[i-j]*j)和不分解直接相乘(也就是(i-j)*j)这两个数值谁更大,试图将更大的赋值给dp[i]。
int integerBreak(int n) {
vector<int> dp(n + 1);
dp[2] = 1;
for (int i = 3; i <= n ; i++) {
for (int j = 1; j <= i / 2; j++) {
dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));
}
}
return dp[n];
}
96.不同的二叉搜索树
这道题真的好难想到。主要是考虑到二叉搜索树的特点(左小右大),有n个元素的时候,要考虑1-n中每个元素作为根节点的情况,对于其中一种情况,一旦确定了根节点,那么它的左右子树的节点是什么就是确定的了,而本身的搜索树的种类数就是左右子搜索树种类数相乘,而左右子树的种类数量是由它的节点个数k确定的,也就是dp数组之前已经得到的有个k元素的时候二叉搜索树的数量,虽然这两次情况的具体的数不同,但是因为都是一段同样长度的连续递增的序列构成的二叉搜索树,故而根据搜索树的性质可见是相等的。
知道了递推公式,还要看怎样初始化,这道题当n=1的时候也符合递推公式,dp[1]=dp[0]*dp[0],故而只要初始化dp[0]=1即可(空树只有一种情况)。
int numTrees(int n) {
vector<int> dp(n + 1);
dp[0] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
dp[i] += dp[j - 1] * dp[i - j];
}
}
return dp[n];
}