代码随想录算法训练营day46|第九章 动态规划part08:139.单词拆分、背包问题总结

目录

139.单词拆分 

关于多重背包,你该了解这些! 

背包问题总结篇! 


139.单词拆分 

视频讲解:动态规划之完全背包,你的背包如何装满?| LeetCode:139.单词拆分_哔哩哔哩_bilibili

代码随想录

回溯——

这道题用回溯的做法也能实现,但是需要使用memory数组来记录-以startIndex为起始点是否能保证之后(也包含当前点)全部字符都恰好在wordSet中找到对应的单词,这样有记忆的寻找能减少大量重复搜索,而直接回溯会超时。使用bool作为返回值表示不是一直找而是找到一组即可。

class Solution {
private:
    bool backtracking (const string& s,
            const unordered_set<string>& wordSet,
            vector<bool>& memory,
            int startIndex) {
        if (startIndex >= s.size()) {
            return true;
        }
        // 如果memory[startIndex]不是初始值了,直接使用memory[startIndex]的结果
        if (!memory[startIndex]) return memory[startIndex];
        for (int i = startIndex; i < s.size(); i++) {
            string word = s.substr(startIndex, i - startIndex + 1);
            if (wordSet.find(word) != wordSet.end() && backtracking(s, wordSet, memory, i + 1)) {
                return true;
            }
        }
        memory[startIndex] = false; // 记录以startIndex开始的子串是不可以被拆分的
        return false;
    }
public:
    bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
        vector<bool> memory(s.size(), 1); // -1 表示初始化状态
        return backtracking(s, wordSet, memory, 0);
    }
};

完全背包——

首先还是要说明想要在数组中找到某个元素,需要将数组存储为set,又因为不用排序,所以unordered_set就够用。
很明显这道题字符串s是背包,而物品自然是字典里的单词,要看能否用物品将背包装满。这道题的dp数组是bool类型,记录从起始下标到当前位置组成的sub字符串是否能由字典里的单词组成(或者说能不能装满),递推公式自然是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true
至于初始化问题,因为最后推导的时候需要保证每一个dp[j]==true都是准确的,所以必须用false来初始化,但是必须设置dp[ 0 ]=true,否则后面的没办法推导下去了,而且这样设置意义也很明显,长度0不用装物品就是满的。
虽然这道题没有让求方法数,所以看起来好像先遍历物品还是背包都可以,但是实际上必须要先遍历背包后遍历物品,这是因为将物品放入背包是要有顺序的,而要求顺序的话,就只能是先遍历背包后遍历物品,也就是,如果先遍历物品,那么实际上物品装入背包是没法控制准确的,也就是没法知道背包哪空哪不空,容易乱套,而先遍历背包,那就能一点一点装满整个背包,dp数组就能合理推导。

bool wordBreak(string s, vector<string>& wordDict) {
        unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
        vector<bool> dp(s.size() + 1, false);
        dp[0] = true;
        for (int i = 1; i <= s.size(); i++) {   // 遍历背包
            for (int j = 0; j < i; j++) {       // 遍历物品
                string word = s.substr(j, i - j); //substr(起始位置,截取的个数)
                if (wordSet.find(word) != wordSet.end() && dp[j]) {
                    dp[i] = true;
                }
            }
        }
        return dp[s.size()];
    }

忽然联想到KMP算法了,主要是跳转到合适的下标,比如比较到 f 处发现对不上了,那就跳转到next[ 4 ](当前下标减1处)对应的下标2(1+1=2,每次固定加1)处,这样已经比较过的 a a 还可以重复利用,直接从 b 处再开始比较即可,贴一下示意图——

关于多重背包,你该了解这些! 

代码随想录

多重背包在面试中基本不会出现,力扣上也没有对应的题目,对多重背包的掌握程度知道它是一种01背包,并能在01背包的基础上写出对应代码就可以了。

有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。多重背包和01背包是非常像的,把Mi件摊开,其实就是一个01背包问题了。

#include<iostream>
#include<vector>
using namespace std;
int main() {
    int bagWeight,n;
    cin >> bagWeight >> n;
    vector<int> weight(n, 0);
    vector<int> value(n, 0);
    vector<int> nums(n, 0);
    for (int i = 0; i < n; i++) cin >> weight[i];
    for (int i = 0; i < n; i++) cin >> value[i];
    for (int i = 0; i < n; i++) cin >> nums[i];

    vector<int> dp(bagWeight + 1, 0);

    for(int i = 0; i < n; i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            // 以上为01背包,然后加一个遍历个数
            for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
                dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
            }
        }
    }

    cout << dp[bagWeight] << endl;
}

时间复杂度:O(m × n × k),m:物品种类个数,n背包容量,k单类物品数量。

背包问题总结篇! 

代码随想录

背包递推公式 

问能否能装满背包(或者最多装多少):dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]) ,对应题目如下:

问装满背包有几种方法:dp[j] += dp[j - nums[i]] ,对应题目如下:

问背包装满最大价值:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]) ,对应题目如下:

问装满背包所有物品的最小个数:dp[j] = min(dp[j - coins[i]] + 1, dp[j]),对应题目如下:

遍历顺序

01背包

二维dp数组——先遍历物品还是先遍历背包均可,且第二层for循环是正序遍历。

一维dp数组——只能先遍历物品再遍历背包容量,且第二层for循环是倒序遍历。

完全背包

  1. 如果求组合数(不同顺序结果相同)就是外层for循环遍历物品,内层for遍历背包
  2. 如果求排列数(不同顺序结果不同)就是外层for遍历背包,内层for循环遍历物品
  3. 如果求最小数(不涉及顺序问题),那么两层for循环的先后顺序就无所谓。

对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值