17年真题题解(c/c++b组)
第一题:购物单
题目:
小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。
这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。
小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。
现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。
取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。
你的任务是计算出,小明最少需要取多少现金。
以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。
**** 180.90 88折
**** 10.25 65折
**** 56.14 9折
**** 104.65 9折
**** 100.30 88折
**** 297.15 半价
**** 26.75 65折
**** 130.62 半价
**** 240.28 58折
**** 270.62 8折
**** 115.87 88折
**** 247.34 95折
**** 73.21 9折
**** 101.00 半价
**** 79.54 半价
**** 278.44 7折
**** 199.26 半价
**** 12.97 9折
**** 166.30 78折
**** 125.50 58折
**** 84.98 9折
**** 113.35 68折
**** 166.57 半价
**** 42.56 9折
**** 81.90 95折
**** 131.78 8折
**** 255.89 78折
**** 109.17 9折
**** 146.69 68折
**** 139.33 65折
**** 141.16 78折
**** 154.74 8折
**** 59.42 8折
**** 85.44 68折
**** 293.70 88折
**** 261.79 65折
**** 11.30 88折
**** 268.27 58折
**** 128.29 88折
**** 251.03 8折
**** 208.39 75折
**** 128.88 75折
**** 62.06 9折
**** 225.87 75折
**** 12.89 75折
**** 34.28 75折
**** 62.16 58折
**** 129.12 半价
**** 218.37 半价
**** 289.69 8折
需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。
请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。
特别提醒:不许携带计算器入场,也不能打开手机。
代码:
5200
笔记:
1:可以将数据复制到excel上,然后用求和公式较为简便;
第二题:等差素数列
题目:
2,3,5,7,11,13,…是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。
2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。
这是数论领域一项惊人的成果!
有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:
长度为10的等差素数列,其公差最小值是多少?
注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。
代码:
#include <stdio.h>
int sushu(int x)
{
int i;
for(i=2;i<x;i++)
{
if(x%i==0)
return 0;
}
return 1;
}
int main()
{
int sum=1;
int i,k,h,a;
for(i=2;i<50000;i++)//枚举素数的首项
{
if(sushu(i))//判断是不是素数
{
for(k=1;k<10000;k++)//枚举公差
{
for(h=1;h<1000;h++)
{
a=i+h*k;
if(sushu(a))
sum++;
else
{
sum=1;
break;//不是素数就退出
}
if(sum==10)//有十个素数就输出
{
printf("%d\n",k);
return 0;
}
}
}
}
}
}
笔记:
采用暴力枚举的方法,先枚举首项,在枚举公差,满足十个则输出公差。
第三题:承压计算
题目:
X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。
每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。
7
5 8
7 8 8
9 2 7 2
8 1 4 9 1
8 1 8 8 4 1
7 9 6 1 4 5 4
5 6 5 5 6 9 5 6
5 5 4 7 9 3 5 5 1
7 5 7 9 7 4 7 3 3 1
4 6 4 5 5 8 8 3 2 4 3
1 1 3 3 1 6 6 5 5 4 4 2
9 9 9 2 1 9 1 9 2 9 5 7 9
4 3 3 7 7 9 3 6 1 3 8 8 3 7
3 6 8 1 5 3 9 5 8 3 8 1 8 3 3
8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9
8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4
2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9
7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6
9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3
5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9
6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4
2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4
7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6
1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3
2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8
7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9
7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6
5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
其中的数字代表金属块的重量(计量单位较大)。
最下一层的X代表30台极高精度的电子秤。
假设每块原料的重量都十分精确地平均落在下方的两个金属块上,
最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。
电子秤的计量单位很小,所以显示的数字很大。
工作人员发现,其中读数最小的电子秤的示数为:2086458231
请你推算出:读数最大的电子秤的示数为多少?
注意:需要提交的是一个整数,不要填写任何多余的内容。
代码:
#include<stdio.h>
double a[30][30]={
{7 },
{5, 8} ,
{7, 8,8 },
{9, 2, 7, 2},
{8, 1,4, 9, 1 },
{8, 1 ,8,8 ,4,1 },
{7, 9, 6 ,1, 4 ,5, 4},
{5, 6, 5, 5, 6, 9 ,5, 6},
{5,5, 4, 7, 9, 3, 5, 5,1 },
{7, 5 ,7, 9, 7, 4, 7, 3, 3,1},
{4, 6,4, 5, 5, 8 ,8, 3, 2, 4, 3},
{1 ,1 ,3 ,3 ,1 ,6 ,6 ,5, 5, 4, 4, 2},
{9 ,9 ,9 ,2 ,1 ,9 ,1 ,9 ,2 ,9 ,5 ,7 ,9},
{4 ,3 ,3 ,7, 7, 9, 3, 6, 1, 3, 8, 8, 3, 7},
{3 ,6 ,8 ,1 ,5 ,3 ,9 ,5 ,8 ,3 ,8 ,1 ,8 ,3 ,3},
{8 ,3 ,2 ,3, 3, 5, 5, 8, 5, 4, 2, 8 ,6 ,7 ,6, 9},
{8 ,1 ,8 ,1 ,8 ,4 ,6 ,2 ,2 ,1 ,7 ,9 ,4 ,2 ,3 ,3 ,4},
{2 ,8 ,4 ,2 ,2 ,9 ,9, 2, 8, 3, 4, 9, 6, 3, 9, 4, 6, 9},
{7 ,9 ,7 ,4 ,9 ,7 ,6 ,6 ,2 ,8 ,9 ,4 ,1 ,8 ,1 ,7 ,2 ,1 ,6},
{9, 2, 8, 6, 4, 2, 7, 9 ,5 ,4, 1, 2, 5, 1, 7, 3, 9, 8, 3, 3},
{5 ,2 ,1 ,6 ,7 ,9 ,3 ,2 ,8 ,9 ,5 ,5 ,6 ,6 ,6 ,2 ,1 ,8 ,7 ,9 ,9},
{6 ,7 ,1 ,8 ,8 ,7, 5, 3, 6, 5, 4, 7, 3, 4, 6, 7, 8, 1, 3, 2, 7, 4},
{2 ,2 ,6 ,3 ,5 ,3, 4 ,9 ,2 ,4 ,5 ,7 ,6 ,6 ,3 ,2 ,7 ,2 ,4 ,8 ,5 ,5 ,4},
{7 ,4 ,4 ,5 ,8, 3, 3, 8, 1, 8, 6, 3, 2, 1, 6, 2, 6, 4, 6, 3, 8, 2, 9, 6},
{1 ,2 ,4 ,1 ,3 ,3 ,5 ,3 ,4 ,9 ,6 ,3 ,8 ,6 ,5 ,9 ,1 ,5 ,3 ,2 ,6 ,8 ,8 ,5 ,3},
{2 ,2 ,7, 9, 3, 3, 2, 8, 6, 9, 8, 4, 4, 9, 5, 8, 2, 6, 3, 4, 8, 4, 9, 3, 8, 8},
{7 ,7 ,7 ,9 ,7 ,5 ,2 ,7 ,9 ,2 ,5 ,1 ,9 ,2 ,6 ,5, 3 ,9 ,3 ,5 ,7 ,3 ,5 ,4 ,2 ,8 ,9,},
{7 ,7, 6, 6 ,8 ,7 ,5 ,5 ,8, 2, 4, 7, 7, 4, 7, 2, 6, 9, 2, 1, 8, 2, 9, 8, 5, 7, 3, 6} ,
{5 ,9 ,4 ,5 ,5 ,7 ,5 ,5 ,6 ,3 ,5 ,3 ,9 ,5 ,8 ,9 ,5 ,4 ,1 ,2 ,6 ,1 ,4 ,3 ,5 ,3 ,2 ,4 ,1}
};
int main()
{
int i,j;
double max=0,min=9999999;
for(i=1;i<=29;i++)
for(j=0;j<=i;j++)
{
if(j==0)
a[i][j]+=a[i-1][0]/2.0;
else
{
a[i][j]+=a[i-1][j-1]/2.0+a[i-1][j]/2.0;
}
}
for(i=0;i<=29;i++)
{
if(a[29][i]<min)
min=a[29][i];
if(a[29][i]>max)
max=a[29][i];
}
printf("%lf\n",2086458231/min*max);
return 0;
}
笔记:
对物体重量进行累加,采用从上到下的顺序,我们只需要加上上一层的两个数的一半,不过每一层第一个比较特殊。
第四题: 方格分割
题目:
6x6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。
如图:p1.png, p2.png, p3.png 就是可行的分割法。
试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。
请提交该整数,不要填写任何多余的内容或说明文字。
代码:
#include<iostream>
#include<cstring>
using namespace std;
int book[10][10];
int dire[4][2] = { -1,0,1,0,0,-1,0,1 };
const int N = 6;
int ans;
void dfs(int x, int y)
{
if (x == 0 || y == N || x == N || y == 0) {
ans++;
return;
}
for (int i = 0; i < 4; i++)
{
int nx = x + dire[i][0];
int ny = y + dire[i][1];
if (nx<0 || nx>N || y<0 || ny>N) continue;
if (!book[nx][ny])
{
book[nx][ny] = 1;
book[N - nx][N - ny] = 1;
dfs(nx, ny);
book[nx][ny] = 0;
book[N - nx][N - ny] = 0;
}
}
}
int main()
{
book[N / 2][N / 2] = 1;
dfs(N / 2, N / 2);
cout << ans / 4 << endl;
return 0;
}
//最后结果 509
笔记:
这种题我不太会,就借鉴了别人的代码看了看。
第五题:取数位
题目:
求1个整数的第k位数字有很多种方法。
以下的方法就是一种。
// 求x用10进制表示时的数位长度
int len(int x){
if(x<10) return 1;
return len(x/10)+1;
}
// 取x的第k位数字
int f(int x, int k){
if(len(x)-k==0) return x%10;
return _____________________; //填空
}
int main()
{
int x = 23574;
printf("%d\n", f(x,3));
return 0;
}
对于题目中的测试数据,应该打印5。
请仔细分析源码,并补充划线部分所缺少的代码。
注意:只提交缺失的代码,不要填写任何已有内容或说明性的文字。
代码:
f(x/10,k)
笔记:
从f这个函数中我们可以知道,当x的长度和k相同时,就返回x的最后一位,于是当长度不一样时我们考虑递归。
第六题:最大公共子串
题目:
最大公共子串长度问题就是:
求两个串的所有子串中能够匹配上的最大长度是多少。
比如:“abcdkkk” 和 “baabcdadabc”,
可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。
下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。
请分析该解法的思路,并补全划线部分缺失的代码。
#include <stdio.h>
#include <string.h>
#define N 256
int f(const char* s1, const char* s2)
{
int a[N] [N];
int len1 = strlen(s1);
int len2 = strlen(s2);
int i,j;
memset(a,0,sizeof(int)* N*N);
int max = 0;
for(i=1; i<=len1; i++)
{
for(j=1; j<=len2; j++)
{
if(s1[i-1]==s2[j-1])
{
a[i] [j] = __________________________; //填空
if(a[i] [j] > max)
max = a[i] [j];
}
}
}
return max;
}
int main()
{
printf("%d\n", f(“abcdkkk”, “baabcdadabc”));
return 0;
}
注意:只提交缺少的代码,不要提交已有的代码和符号。也不要提交说明性文字。
代码:
a[i-1][j-1]+1
笔记:
本题主要看懂那个双重for循环,第一个循环可以看成列,第二个for循环可以看成行。即s1的字母扫一遍s2,对应上就为1,否则为0,不过还要看a[i-1] [j-1]。
b | a | a | b | c | d | a | d | a | b | c | |
---|---|---|---|---|---|---|---|---|---|---|---|
a | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
b | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
c | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 3 |
d | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 1 | 0 | 0 | 0 |
k | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
k | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
k | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
第七题:日期问题
题目:
小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。
比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。
给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?
输入
一个日期,格式是"AA/BB/CC"。 (0 <= A, B, C <= 9)
输入
输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。
样例输入
02/03/04
样例输出
2002-03-04
2004-02-03
2004-03-02
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
代码:
#include<iostream>
#include<sstream>
#include<set>
using namespace std;
bool isleap(int year){
return (year%4==0&& year%100!=0) || year%400==0; //闰年返回1,其他返回0
}
void i2s(int i,string &s)
{
stringstream ss;
ss<<i;
ss>>s;
}
string f(int a,int b,int c) //年,月,日
{
if(a>=60&&a<=99) a+=1900;
if(a>=0&&a<=59) a+=2000;
if(b<1 || b>12) return " "; //说明这个不符合条件
if(c<1 || c>31) return " ";
switch(b){
case 2 :
if(isleap(a) && c>29) return " ";
if(!isleap(a) && c>28) return " ";
break;
case 4 :
if(c>30) return " ";
break;
case 6 :
if(c>30) return " ";
break;
case 9 :
if(c>30) return " ";
break;
case 11 :
if(c>30) return " ";
break;
default :
break;
}
string _a,_b,_c;
i2s(a,_a);
i2s(b,_b);
i2s(c,_c);
if(_b.length()==1) _b="0"+_b;
if(_c.length()==1) _c="0"+_c;
return _a+"-"+_b+"-"+_c;
}
int main(){
string in;
cin>>in;
int a=0,b=0,c=0;
a=(in[0]-'0')*10+(in[1]-'0');
b=(in[3]-'0')*10+(in[4]-'0');
c=(in[6]-'0')*10+(in[7]-'0');
string case1=f(a,b,c);
string case2=f(c,a,b);
string case3=f(c,b,a);
set<string> ans;
if(case1!=" ") ans.insert(case1);
if(case2!=" ") ans.insert(case2);
if(case3!=" ") ans.insert(case3);
for(set<string>::iterator iter =ans.begin() ; iter !=ans.end(); iter++)
cout<<*iter<<endl;
}
第八题:包子凑数
题目:
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
例如,
输入:
2
4
5
程序应该输出:
6
再例如,
输入:
2
4
6
程序应该输出:
INF
样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
代码:
#include <bits/stdc++.h>
#include <cstdio>
using namespace std;
#define MAXN 99999
int a[101];
int n;
bool consist[MAXN];
int ans=0;
int minn = 999;
int main() {
memset(consist,false,sizeof(consist));
cin>>n;
for(int i=0;i<n;i++){
cin>>a[i];
consist[a[i]] = true;
minn = min(minn,a[i]);
}
int flag=0;
for(int i=1;i<MAXN;i++){
//printf("%d %d\n",i,consist[i]);
if(!consist[i]){
ans++;
flag=0;
}else{
flag++;
for(int j=0;j<n;j++){
consist[i+a[j]] = true;
}
}
if(flag == minn){
break;
}
}
if(flag>=minn){
cout<<ans;
}else{
cout<<"INF";
}
}
第九题:分巧克力
题目:
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
1. 形状是正方形,边长是整数
2. 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出
输出切出的正方形巧克力最大可能的边长。
样例输入:
2 10
6 5
5 6
样例输出:
2
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
代码:
#include<iostream>
using namespace std;
int main(){
int n,k;
int h[100000];
int w[100000];
cin>>n>>k;
int cnt;
for(int i=0;i<n;i++)
{
cin>>h[i]>>w[i];
}
int len=100000;
for(;len>=1;len--)
{
cnt=0;
for(int i=0;i<n;i++)
{
cnt+=(h[i]/len)*(w[i]/len);
}
if(cnt>=k)
{
cout<<len<<endl;
return 0;
}
}
}
第十题:k倍区间
题目:
给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出
输出一个整数,代表K倍区间的数目。
例如,
输入:
5 2
1
2
3
4
5
程序应该输出:
6
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 2000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+5;
int sum[N],cnt[N],n,k;
ll ans;
int main(){
scanf("%d%d",&n,&k),cnt[0]=1;
for(int i=1;i<=n;i++)
{
scanf("%d",&sum[i]),sum[i]=(sum[i-1]+sum[i])%k;
ans+=cnt[sum[i]];
cnt[sum[i]]++;
}
printf("%lld\n",ans);
return 0;
}