重建道路 洛谷p1272

题目描述

一场可怕的地震后,人们用N个牲口棚(1≤N≤150,编号1..N)重建了农夫John的牧场。由于人们没有时间建设多余的道路,所以现在从一个牲口棚到另一个牲口棚的道路是惟一的。因此,牧场运输系统可以被构建成一棵树。John想要知道另一次地震会造成多严重的破坏。有些道路一旦被毁坏,就会使一棵含有P(1≤P≤N)个牲口棚的子树和剩余的牲口棚分离,John想知道这些道路的最小数目。

输入输出格式

输入格式:

 

第1行:2个整数,N和P

第2..N行:每行2个整数I和J,表示节点I是节点J的父节点。

 

输出格式:

 

单独一行,包含一旦被破坏将分离出恰含P个节点的子树的道路的最小数目。

 

输入输出样例

输入样例#1: 复制

11 6
1 2
1 3
1 4
1 5
2 6
2 7
2 8
4 9
4 10
4 11

输出样例#1: 复制

2

说明

【样例解释】

如果道路1-4和1-5被破坏,含有节点(1,2,3,6,7,8)的子树将被分离出来

 

 

我们设dp[k][i][j]表示以i为根的子树,在前k个儿子中,分离出一个大小为j的子树(必须包含i),所需要最少的操作次数。

那么我们每计算到第k+1个新的儿子v时(full_son[v]表示v的儿子个数),

dp[k+1][i][j]=min(dp[k][i][j-t]+dp[full_son[v]][v][t]);

由于一个树形关系,我们需要在一个dfs上进行dp,即先dfs(v),然后更新dp[k+1][i][j]。

这个k的一维显然可以用滚动数组优化掉。

那么就是

j=m->1 t=1->j dp[i][j]=min(dp[i][j-t]+dp[v][t]);

同时,dp一律要注意初始化,即刚开始时所有的dp[i][1]=du[i](du[i]表示与i连边的节点数,又称i的入度(树是无向边哟!))

#include<bits/stdc++.h>
#define f(i,l,r) for(i=(l);i<=(r);i++)
#define ff(i,r,l) for(i=(r);i>=(l);i--)
using namespace std;
const int MAXN=155,INF=10000000;
int n,P;
struct Edge{
	int v,w,nxt;
}e[MAXN<<1];
int h[MAXN],tot;
int deg[MAXN];
int dp[MAXN][MAXN],ans=INF;
inline void add(int u,int v)
{
	e[tot].v=v;
	e[tot].nxt=h[u];
	h[u]=tot++;
}
inline void dfs(int u,int fa)
{
	int i,j,k;
	dp[u][1]=deg[u];
	for(i=h[u];~i;i=e[i].nxt){
		int v=e[i].v;
		if(v==fa) continue;
		dfs(v,u);
		ff(j,P,2){
			f(k,1,j-1){
				dp[u][j]=min(dp[u][j],dp[u][j-k]+dp[v][k]-2); 
			}
		}
	}
	ans=min(ans,dp[u][P]);
}
int main()
{
	ios::sync_with_stdio(false);
	memset(h,-1,sizeof(h));
	memset(dp,60,sizeof(dp));
	int i,j,u,v;
	cin>>n>>P;
	f(i,1,n-1){
		cin>>u>>v;
		add(u,v);
		add(v,u);
		deg[u]++;
		deg[v]++;
	}
	dfs(1,0);
	cout<<ans<<endl;
	return 0;	
 } 

 

### 关于 P1746 离开中山路的 Python 解题思路 对于编号为P1746的题目《离开中山路》,该问题属于图论中的最短路径求解类问题。给定地图上的多个节点以及连接这些节点的道路长度,目标是从起点到终点找到一条总距离最小的路径[^1]。 #### 数据结构的选择 为了高效处理此类问题,可以采用邻接表来表示输入的地图数据。邻接表不仅节省空间而且便于快速访问相连边的信息。此外,在寻找最短路径过程中,优先队列(通常通过堆实现)能够帮助按照当前累计成本从小到大顺序遍历各个顶点[^2]。 #### Dijkstra算法的应用 针对本题特点——即不存在负权边的情况,Dijkstra算法是一个合适的选择。此方法从源结点出发逐步扩展已知区域直至覆盖整个网络;每次从未被收录进来的候选集中挑选具有最低估计代价者作为新的探索中心,并更新其相邻未访问过的邻居们的临时标记值直到抵达目的地为止[^3]。 下面是具体的Python代码实现: ```python import heapq def dijkstra(n, edges, start, end): graph = [[] for _ in range(n)] # 构建加权无向图的邻接列表形式 for u, v, w in edges: graph[u].append((v, w)) graph[v].append((u, w)) dist = [float('inf')] * n # 初始化所有节点的距离为无穷大 prev = [-1] * n # 记录前驱用于重建路径 pq = [(0, start)] # 将起始位置加入优先级队列并设初始距离为零 dist[start] = 0 while pq: d, node = heapq.heappop(pq) if node == end: # 提早终止条件:当到达终点时停止搜索 break if d > dist[node]: # 跳过已经找到了更优解的情形 continue for neighbor, weight in graph[node]: new_dist = d + weight if new_dist < dist[neighbor]: dist[neighbor] = new_dist prev[neighbor] = node heapq.heappush(pq, (new_dist, neighbor)) path = [] curr = end while curr != -1: path.append(curr) curr = prev[curr] return list(reversed(path)), dist[end] if __name__ == "__main__": N = ... # 输入城市数量N M = ... # 道路条数M roads = [...] # 所有道路信息[(A_i,B_i,C_i)...] S, T = ..., ... # 出发点S和目的地点T result_path, min_distance = dijkstra(N, roads, S-1, T-1) # 注意索引调整 print(f"The shortest distance is {min_distance}.") print("The optimal route:", " -> ".join(map(str,[i+1 for i in result_path]))) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值