C++ 最大公因数

【广告】

此篇是本人第一篇博客,请大家多多鼓励

【最大公因数】

最大公因数(简称GCD),是指两个及以上整数共有的最大的正整数因数

例如,18和24的最大公因数是6;20和50最大公因数是10

在数学上,两个数的最大公因数简写为(两个数设为a,b):(a,b)

【两种特殊情况】

两种特殊情况:

1、两数为倍数关系,GCD为较小那个数

2、两数互质,GCD=1

怎么用C++求最大公因数?

办法当然有……

【数学:短除法】

小学时,最常用的短除法

第一种C++求最大公因数写法,如下:

【穷举法】:

int gcd(int a,int b){
    for(int i=a;i>=0;i--){
        if(a%i==0&&b%i==0){
            return i;
        }
    }
}

显然,如果你将这种写法在竞赛上使用,那就是超时的料

因为这个时间复杂度达到了O(a),如果a大于100000000,那么肯定超过1s

那么怎么办呢?

没关系,还有第二种解法

用质因数分解法

一样是穷举法

但是代码太长,就不展示了(#^.^#)

【更相减损法/辗转相减法】

想知道第三种,必须知道两个定理:

定理1:如果(a-b)%x = 0 一定有 a%x==b%x;反之亦然。

定理2:如果a>b,则GCD(a,b)=GCD(a-b,b)。

例如: GCD(21,14) = GCD(7,14) = GCD(14,7) = GCD(7,7) = 7

所以由定理2得到第三种解法

也称更相减损法/辗转相减法

int gcd(int a,int b){
	while(a!=b){
		if(a<b){
			swap(a,b);
			a-=b;
		}
	}
	return a;
} 

还没结束!!!

【辗转相除法】

还有第四种写法

定理3:如果b>0,有GCD(a,b)=GCD(b,a%b)

 证明:多次使用定理2:

GCD(a,b)=GCD(a-b,b)= GCD(a-b-b,b)=...=GCD(a%b,b)=GCD(b,a%b)。

例如:GCD(377,319) = GCD(319,58) = GCD(58, 29) = GCD(29,0)=29

由定理3可以得到著名的辗转相除法(也叫欧几里德算法)

代码如下

int gcd(int a,int b){
	while(b){
		int temp=b;
		b=a%b;
		a=temp;
	}
	return a;
}

还有递归写法

int gcd(int a,int b){
	if(b==0){
		return a;
	}
	return gcd(b,a%b);
}

辗转相除法非常简明高效的算法,体现了程序设计中的数学之美。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值